Big Data Probably Knows More About You Than Your Friends Do
Data is the new oil. It is highly valuable, and it is everywhere, even if you're not aware of it. For example, it's there when you use social media. Sharing pictures on Facebook lets its facial recognition software peg you and your friends. Thanks to that software, now anywhere you visit that has installed cameras, your face can be identified and your actions recorded.
The big data revolution is advancing much faster than the ones before, and it carries both promises and perils for humanity.
It's there when you log into Twitter, posting one of the 230 million tweets per day, which up until last month were all archived by the Library of Congress and will be made public for research. These social media data can be used to predict your political affiliations, ethnicity, race, age, how close you are with your family and friends, your mental health, even when you are most likely to be grumpy or go to the gym. These data can also predict when you are apt to get sick and track how diseases are spreading.
In fact, tracking isn't limited to what you decide to share or public spaces anymore. Lab experiments show Comcast and other cable companies may soon be able to record and monitor movements in your house. They may also be able to read your lips and identify your visitors simply by assessing how Wi-Fi waves bounce off bodies and other objects in houses. In one study, MIT researchers used routers and sensors to monitor breathing and heart rates with 99% accuracy. Routers could soon be used for seemingly good things, like monitoring infant breathing and whether an older adult is about to take a big tumble. However, it may also enable unwanted and unparalleled levels of surveillance.
Some call the first digital pill a snitch pill, medication with a tattletale, and big brother in your belly.
Big data is there every time you pick up your smartphone, which can track your daily steps, where you go via geolocation, what time you wake up and go to bed, your punctuality, and even your overall health depending on which features you have enabled. Are you close with your mom; are you a sedentary couch potato; did you commit a murder (iPhone data was recently used in a German murder trial)? Smartphone-generated data can be used to label you---and not just you, your future and past generations too.
Smartphones are not the only "things" gathering data on you. Anything with an on and off switch can be connected to the internet and generate data. The new rule seems to be, if it can be, it will be, connected. Washing machines, coffee makers, medical appliances, cars, and even your luggage (yes, someone created a self-driving suitcase) can and are often generating data. "Smart" refrigerators can monitor your food levels and automatically create shopping lists and order food for you—while recording your alcohol consumption and whether you tend to be a healthy or junk food eater.
Even medicines can monitor behaviors. The first digital pill was just approved by the FDA last November to track whether patients take their medicines. It has a sensor that sends signals to a patient's smartphone, and others, when it encounters stomach acid. Some call it a snitch pill, medication with a tattletale, and big brother in your belly. Others see it as a major breakthrough to help patients remember to take their medications and to save payers millions of dollars.
Big data is there when you go shopping. Credit card and retail data can show whether you pay for a gym, if you are pregnant, have children, and your credit-worthiness. Uber and Lyft transactional data reveal what time you usually go to and leave work and who you regularly visit (Uber data has been used to catch cheating spouses).
Amazon now sells a bedroom camera to see your fashion choices and offer advice. It is marketing a more fashionable you, but it probably also wants the video feed showing your body measurements—they're "a newly prized currency," according to the Washington Post. They help retailers create more customized and better fitting clothes. Amazon also just partnered with Berkshire Hathaway and JPMorgan Chase, the largest bank in the United States by assets, to create an independent health-care company for their employees--raising privacy concerns as Amazon already owns so much data about us, from drones, devices, the AI of Alexa, and our viewing, eating, and other purchasing habits on Amazon Prime.
Data generation and storage can also be used to make the world better, safer and fairer.
Big data is arguably a new phenomenon; almost all the world's data (90%) were produced within the last 2 years or so. It is a result of the fusion of physical, digital, and biological technologies that together constitute the fourth industrial revolution, according to the World Economic Forum. Unlike the last three revolutions, involving the discoveries of steam power, electrical energy, and computers—this revolution is advancing much faster than the ones before and it carries both promises and perils for humanity.
Some people may want to opt out of all this tracking, reduce their digital footprint and stay "off the grid." However, it is worth noting that data generation and storage can be used for great things --- things that make the world better, safer and fairer. For example, sharing electronic health records and social media data can help scientists better track and understand diseases, develop new cures and therapies, and understand the safety and efficacy profiles of medicines and vaccines.
While full of promise, big data is not without its pitfalls. Data are often not interoperable or easily integrated. You can use your credit card practically anywhere in the world, but you cannot easily port your electronic health record to the doctor or hospital across the street, for example.
Data quality can also be poor. It is dependent on the person entering it. My electronic health record at one point said I was male, and I was pregnant at the time. No doctors or nurses seemed to notice. The problem is worse on a global level. For example, causes of death can be coded differently by country and village. Take HIV patients: they often develop secondary infections, like TB. Do you record the cause of death as TB or HIV? There isn't global consistency, and political pressure from patient groups can exert itself on death records. Often, each group wants to say they have the most deaths so they can fundraise more money.
Data can be biased. More than 80 percent of genomic data comes from Caucasians. Only 14 percent is from Asians and 3.5 percent is from African and Hispanic populations. Thus, when scientists use genomic data to develop drugs or lab tests, they may create biased products that work for only some demographics. Take type 2 diabetes blood tests; some do not work well for African Americans. One study estimates that 650,000 African Americans may have undiagnosed diabetes, because a common blood test doesn't work for them. Using biased data in medicine can be a matter of life and death. Moreover, if genomic medicine benefits only "a privileged few," the practice raises concerns about unequal access.
Large companies are selling data that originated from you and you are not sharing in the wealth.
We need to think carefully and be transparent about the values embedded in our data, data analytics (algorithms), and data applications. Numbers are never neutral. Algorithms are always embedded with subjective normative values--sometimes purposely, sometimes not. To address this problem, we need ethicists who can audit databanks and algorithms to identify embedded norms, values and biases and help ensure they are addressed or at least transparently disclosed. Additionally, we need to determine how to let people opt out of certain types of data collection and uses—and not just at the beginning of a system, but also at any point in their lifetimes. There is a right to be forgotten, which hasn't been adequately operationalized in today's data sphere.
What do you think happens to all of these data collected about us? The short answer is the public doesn't really know. A lot of it looks like what is in a medical record—i.e. height, weight, pregnancy status, age, mental health, pulse, blood pressure, and illness symptoms--- yet, it isn't protected by HIPPA, like your medical record information.
And it is being consolidated into the hands of fewer and fewer big players. Large companies are selling data that originated from you and you are not sharing in the wealth.
A possible solution is to create an app, managed by a nonprofit or public benefit corporation, through which you could download and manage all the data collected about you. For example, you could download your credit card statements with all your purchasing habits, your Uber rides showing transit patterns, medical records, electric bills, every digital record you have and would like to download--into one application. You would then have the power to license pieces or the collection of your data to users for a small fee for one year at a time. Uses and users could be monitored and audited leveraging blockchain capabilities. After the year is up, you can withdraw access.
You could be your own data landlord. We could democratize big data and empower people to better control and manage the wealth of information collected about us. Why should only the big companies like Amazon and Apple profit off the new oil? Let's create an app so we can all manage our data wealth and maybe even become data barons—an app created by the people for the people.
Bivalent Boosters for Young Children Are Elusive. The Search Is On for Ways to Improve Access.
It’s Theo’s* first time in the snow. Wide-eyed, he totters outside holding his father’s hand. Sarah Holmes feels great joy in watching her 18-month-old son experience the world, “His genuine wonder and excitement gives me so much hope.”
In the summer of 2021, two months after Theo was born, Holmes, a behavioral health provider in Nebraska lost her grandparents to COVID-19. Both were vaccinated and thought they could unmask without any risk. “My grandfather was a veteran, and really trusted the government and faith leaders saying that COVID-19 wasn’t a threat anymore,” she says.” The state of emergency in Louisiana had ended and that was the message from the people they respected. “That is what killed them.”
The current official public health messaging is that regardless of what variant is circulating, the best way to be protected is to get vaccinated. These warnings no longer mention masking, or any of the other Swiss-cheese layers of mitigation that were prevalent in the early days of this ongoing pandemic.
The problem with the prevailing, vaccine centered strategy is that if you are a parent with children under five, barriers to access are real. In many cases, meaningful tools and changes that would address these obstacles are lacking, such as offering vaccines at more locations, mandating masks at these sites, and providing paid leave time to get the shots.
Children are at risk
Data presented at the most recent FDA advisory panel on COVID-19 vaccines showed that in the last year infants under six months had the third highest rate of hospitalization. “From the beginning, the message has been that kids don’t get COVID, and then the message was, well kids get COVID, but it’s not serious,” says Elias Kass, a pediatrician in Seattle. “Then they waited so long on the initial vaccines that by the time kids could get vaccinated, the majority of them had been infected.”
A closer look at the data from the CDC also reveals that from January 2022 to January 2023 children aged 6 to 23 months were more likely to be hospitalized than all other vaccine eligible pediatric age groups.
“We sort of forced an entire generation of kids to be infected with a novel virus and just don't give a shit, like nobody cares about kids,” Kass says. In some cases, COVID has wreaked havoc with the immune systems of very young children at his practice, making them vulnerable to other illnesses, he said. “And now we have kids that have had COVID two or three times, and we don’t know what is going to happen to them.”
Jumping through hurdles
Children under five were the last group to have an emergency use authorization (EUA) granted for the COVID-19 vaccine, a year and a half after adult vaccine approval. In June 2022, 30,000 sites were initially available for children across the country. Six months later, when boosters became available, there were only 5,000.
Currently, only 3.8% of children under two have completed a primary series, according to the CDC. An even more abysmal 0.2% under two have gotten a booster.
Ariadne Labs, a health center affiliated with Harvard, is trying to understand why these gaps exist. In conjunction with Boston Children’s Hospital, they have created a vaccine equity planner that maps the locations of vaccine deserts based on factors such as social vulnerability indexes and transportation access.
“People are having to travel farther because the sites are just few and far between,” says Benjy Renton, a research assistant at Ariadne.
Michelle Baltes-Breitwisch, a pharmacist, and her two-year-old daughter, Charlee, live in Iowa. When the boosters first came out she expected her toddler could get it close to home, but her husband had to drive Charlee four hours roundtrip.
This experience hasn’t been uncommon, especially in rural parts of the U.S. If parents wanted vaccines for their young children shortly after approval, they faced the prospect of loading babies and toddlers, famous for their calm demeanor, into cars for lengthy rides. The situation continues today. Mrs. Smith*, a grant writer and non-profit advisor who lives in Idaho, is still unable to get her child the bivalent booster because a two-hour one-way drive in winter weather isn’t possible.
It can be more difficult for low wage earners to take time off, which poses challenges especially in a number of rural counties across the country, where weekend hours for getting the shots may be limited.
Protect Their Future (PTF), a grassroots organization focusing on advocacy for the health care of children, hears from parents several times a week who are having trouble finding vaccines. The vaccine rollout “has been a total mess,” says Tamara Lea Spira, co-founder of PTF “It’s been very hard for people to access vaccines for children, particularly those under three.”
Seventeen states have passed laws that give pharmacists authority to vaccinate as young as six months. Under federal law, the minimum age in other states is three. Even in the states that allow vaccination of toddlers, each pharmacy chain varies. Some require prescriptions.
It takes time to make phone calls to confirm availability and book appointments online. “So it means that the parents who are getting their children vaccinated are those who are even more motivated and with the time and the resources to understand whether and how their kids can get vaccinated,” says Tiffany Green, an associate professor in population health sciences at the University of Wisconsin at Madison.
Green adds, “And then we have the contraction of vaccine availability in terms of sites…who is most likely to be affected? It's the usual suspects, children of color, disabled children, low-income children.”
It can be more difficult for low wage earners to take time off, which poses challenges especially in a number of rural counties across the country, where weekend hours for getting the shots may be limited. In Bibb County, Ala., vaccinations take place only on Wednesdays from 1:45 to 3:00 pm.
“People who are focused on putting food on the table or stressed about having enough money to pay rent aren't going to prioritize getting vaccinated that day,” says Julia Raifman, assistant professor of health law, policy and management at Boston University. She created the COVID-19 U.S. State Policy Database, which tracks state health and economic policies related to the pandemic.
Most states in the U.S. lack paid sick leave policies, and the average paid sick days with private employers is about one week. Green says, “I think COVID should have been a wake-up call that this is necessary.”
Maskless waiting rooms
For her son, Holmes spent hours making phone calls but could uncover no clear answers. No one could estimate an arrival date for the booster. “It disappoints me greatly that the process for locating COVID-19 vaccinations for young children requires so much legwork in terms of time and resources,” she says.
In January, she found a pharmacy 30 minutes away that could vaccinate Theo. With her son being too young to mask, she waited in the car with him as long as possible to avoid a busy, maskless waiting room.
Kids under two, such as Theo, are advised not to wear masks, which make it too hard for them to breathe. With masking policies a rarity these days, waiting rooms for vaccines present another barrier to access. Even in healthcare settings, current CDC guidance only requires masking during high transmission or when treating COVID positive patients directly.
“This is a group that is really left behind,” says Raifman. “They cannot wear masks themselves. They really depend on others around them wearing masks. There's not even one train car they can go on if their parents need to take public transportation… and not risk COVID transmission.”
Yet another challenge is presented for those who don’t speak English or Spanish. According to Translators without Borders, 65 million people in America speak a language other than English. Most state departments of health have a COVID-19 web page that redirects to the federal vaccines.gov in English, with an option to translate to Spanish only.
The main avenue for accessing information on vaccines relies on an internet connection, but 22 percent of rural Americans lack broadband access. “People who lack digital access, or don’t speak English…or know how to navigate or work with computers are unable to use that service and then don’t have access to the vaccines because they just don’t know how to get to them,” Jirmanus, an affiliate of the FXB Center for Health and Human Rights at Harvard and a member of The People’s CDC explains. She sees this issue frequently when working with immigrant communities in Massachusetts. “You really have to meet people where they’re at, and that means physically where they’re at.”
Equitable solutions
Grassroots and advocacy organizations like PTF have been filling a lot of the holes left by spotty federal policy. “In many ways this collective care has been as important as our gains to access the vaccine itself,” says Spira, the PTF co-founder.
PTF facilitates peer-to-peer networks of parents that offer support to each other. At least one parent in the group has crowdsourced information on locations that are providing vaccines for the very young and created a spreadsheet displaying vaccine locations. “It is incredible to me still that this vacuum of information and support exists, and it took a totally grassroots and volunteer effort of parents and physicians to try and respond to this need.” says Spira.
Kass, who is also affiliated with PTF, has been vaccinating any child who comes to his independent practice, regardless of whether they’re one of his patients or have insurance. “I think putting everything on retail pharmacies is not appropriate. By the time the kids' vaccines were released, all of our mass vaccination sites had been taken down.” A big way to help parents and pediatricians would be to allow mixing and matching. Any child who has had the full Pfizer series has had to forgo a bivalent booster.
“I think getting those first two or three doses into kids should still be a priority, and I don’t want to lose sight of all that,” states Renton, the researcher at Ariadne Labs. Through the vaccine equity planner, he has been trying to see if there are places where mobile clinics can go to improve access. Renton continues to work with local and state planners to aid in vaccine planning. “I think any way we can make that process a lot easier…will go a long way into building vaccine confidence and getting people vaccinated,” Renton says.
Michelle Baltes-Breitwisch, a pharmacist, and her two-year-old daughter, Charlee, live in Iowa. Her husband had to drive four hours roundtrip to get the boosters for Charlee.
Michelle Baltes-Breitwisch
Other changes need to come from the CDC. Even though the CDC “has this historic reputation and a mission of valuing equity and promoting health,” Jirmanus says, “they’re really failing. The emphasis on personal responsibility is leaving a lot of people behind.” She believes another avenue for more equitable access is creating legislation for upgraded ventilation in indoor public spaces.
Given the gaps in state policies, federal leadership matters, Raifman says. With the FDA leaning toward a yearly COVID vaccine, an equity lens from the CDC will be even more critical. “We can have data driven approaches to using evidence based policies like mask policies, when and where they're most important,” she says. Raifman wants to see a sustainable system of vaccine delivery across the country complemented with a surge preparedness plan.
With the public health emergency ending and vaccines going to the private market sometime in 2023, it seems unlikely that vaccine access is going to improve. Now more than ever, ”We need to be able to extend to people the choice of not being infected with COVID,” Jirmanus says.
*Some names were changed for privacy reasons.
What causes aging? In a paper published last month, Dr. David Sinclair, Professor in the Department of Genetics at Harvard Medical School, reports that he and his co-authors have found the answer. Harnessing this knowledge, Dr. Sinclair was able to reverse this process, making mice younger, according to the study published in the journal Cell.
I talked with Dr. Sinclair about his new study for the latest episode of Making Sense of Science. Turning back the clock on mouse age through what’s called epigenetic reprogramming – and understanding why animals get older in the first place – are key steps toward finding therapies for healthier aging in humans. We also talked about questions that have been raised about the research.
Show links:
Dr. Sinclair's paper, published last month in Cell.
Recent pre-print paper - not yet peer reviewed - showing that mice treated with Yamanaka factors lived longer than the control group.
Dr. Sinclair's podcast.
Previous research on aging and DNA mutations.
Dr. Sinclair's book, Lifespan.
Harvard Medical School