Could a tiny fern change the world — again?
More than 50 million years ago, the Arctic Ocean was the opposite of a frigid wasteland. It was a gigantic lake surrounded by lush greenery brimming with flora and fauna, thanks to the humidity and warm temperatures. Giant tortoises, alligators, rhinoceros-like animals, primates, and tapirs roamed through nearby forests in the Arctic.
This greenhouse utopia abruptly changed in the early Eocene period, when the Arctic Ocean became landlocked. A channel that connected the Arctic to the greater oceans got blocked. This provided a tiny fern called Azolla the perfect opportunity to colonize the layer of freshwater that formed on the surface of the Arctic Ocean. The floating plants rapidly covered the water body in thick layers that resembled green blankets.
Gradually, Azolla colonies migrated to every continent with the help of repeated flooding events. For around a million years, they captured more than 80 percent of atmospheric carbon dioxide that got buried at the bottom of the Arctic Ocean as billions of Azolla plants perished.
This “Arctic Azolla event” had devastating impacts on marine life. To date, scientists are trying to figure out how it ended. But they documented that the extraordinary event cooled down the Arctic by at least 40 degrees Fahrenheit — effectively freezing the poles and triggering several cycles of ice ages. “This carbon dioxide sequestration changed the climate from greenhouse to white house,” says Jonathan Bujak, a paleontologist who has researched the Arctic through expeditions since 1973.
Some farmers and scientists, such as Bujak, are looking to this ancient fern, which manipulated the Earth’s climate around 49 million years ago with its insatiable appetite for carbon dioxide, as a potential solution to our modern-day agricultural and environmental challenges. “There is no other plant like Azolla in the world,” says Bujak.
Decoding the Azolla plant
Azolla lives in symbiosis with a cyanobacterium called Anabaena that made the plant’s leaf cavities its permanent home at an early stage in Earth's history. This close relationship with Anabaena enables Azolla to accomplish a feat that is impossible for most plants: directly splitting dinitrogen molecules that make up 78 percent of the Earth’s atmosphere.
A dinitrogen molecule consists of two nitrogen atoms tightly locked together in one of the strongest bonds in nature. The semi-aquatic fern’s ability to split nitrogen, called nitrogen-fixing, made it a highly revered plant in East Asia. Rice farmers used Azolla as a biofertilizer since the 11th century in Vietnam and China.
For decades, scientists have attempted to decode Azolla’s evolution. Cell biologist Francisco Carrapico, who worked at the University of Lisbon, has analyzed this distinctive symbiosis since the 1980s. To his amazement, in 1991, he found that bacteria are the third partner of the Azolla-Anabaena symbiosis.
“Azolla and Anabaena cannot survive without each other. They have co-evolved for 80 million years, continuously exchanging their genetic material with each other,” says Bujak, co-author of The Azolla Story, which he published with his daughter, Alexandra Bujak, an environmental scientist. Three different levels of nitrogen fixation take place within the plant, as Anabaena draws down as much as 2,200 pounds of atmospheric nitrogen per acre annually.
“Using Azolla to mitigate climate change might sound a bit too simple. But that is not the case,” Bujak says. “At a microscopic level, extremely complicated biochemical reactions are constantly occurring inside the plant’s cells that machines or technology cannot replicate yet.”
In 2018, researchers based in the U.S. managed to sequence Azolla’s complete genome — which is four times larger than the human genome — through a crowdfunded study, further increasing our understanding of this plant. “Azolla is a superorganism that works efficiently as a natural biotechnology system that makes it capable of doubling in size within three to five days,” says Carrapico.
Making Azolla mainstream again in agriculture
While scientific groups in the Global North have been working towards unraveling the tiny fern’s inner workings, communities in the Global South are busy devising creative ways to return to their traditional agricultural roots by tapping into Azolla’s full potential.
Pham Gia Minh, an entrepreneur living in Hanoi, Vietnam, is one such citizen scientist who believes that Azolla could be a climate savior. More than two decades after working in finance and business development, Minh is now focusing on continuing his grandfather’s legacy, an agricultural scientist who conducted Azolla research until the 1950s. “Azolla is our family’s heritage,” says Minh.
Pham Gia Minh, an entrepreneur and citizen scientist in Hanoi, Vietnam, believes that Azolla could be a climate savior
Pham Gia Minh
Since the advent of chemical fertilizers in the early 1900s, farmers in Asia abandoned Azolla to save on time and labor costs. But rice farmers in the country went back to cultivating Azolla during the Vietnam War after chemical trade embargoes made chemical fertilizers far too expensive and inaccessible.
By 1973, Azolla cultivation in rice paddy fields was established on half a million hectares in Vietnam. By injecting nitrogen into the soil, Azolla improves soil fertility and also increases rice yields by at least 27 percent compared to urea. The plants can also reduce a farm’s methane emissions by 40 percent.
“Unfortunately, after 1985, chemical fertilizers became cheap and widely available in Vietnam again. So, farmers stopped growing Azolla because of the time-consuming and labor-intensive cultivation process,” says Minh.
Minh has invested in a rural farm where he is proving that modern technology can make the process less burdensome. He uses a pump and drying equipment for harvesting Azolla in a small pond, and he deploys a drone for spraying insecticides and fertilizers on the pond at regular intervals.
As Azolla lacks phosphorus, farmers in developing countries still find it challenging to let go of chemical fertilizers completely. Still, Minh and Bujak say that farmers can use Azolla instead of chemical fertilizers after mixing it with dung.
In the last few years, the fern’s popularity has been growing in other developing countries like India, Palestine, Indonesia, the Philippines, and Bangladesh, where local governments and citizens are trying to re-introduce Azolla integrated farming by growing the ferns in small ponds.
Replacing soybeans with Azolla
In Ecuador, Mariano Montano Armijos, a former chemical engineer, has worked with Azolla for more than 20 years. Since 2008, he has shared resources and information for growing Azolla with 3,000 farmers in Ecuador. The farmers use the harvested plants as a bio-fertilizer and feed for livestock.
“The farmers do not use urea anymore,” says Armijos. “This goes against the conventional agricultural practices of using huge amounts of synthetic nitrogen on a hectare of rice or corn fields.”
He insists that Azolla’s greatest strength is that it is a rich source of proteins, making it highly nutritious for human beings as well. After growing Azolla on a small scale in ponds, Armijos and his business partner, Ivan Noboa, are now building a facility for cultivating the ferns as a superfood on an industrial scale.
According to Armijos, one hectare of Azolla in Ecuador can produce seven tons of proteins. Whereas soybeans produce only one ton of protein per hectare. “If we switch to Azolla, it could help in reducing deforestation in the Amazon. But taming Azolla and turning it into a crop is not easy,” he adds.
Henriette Schluepmann, a molecular plant biologist at Utrecht University in the Netherlands, believes that Azolla could replace soybeans and chemical fertilizers someday — only if researchers can achieve yield stability in controlled environments over long durations.
“In a country like the Netherlands that is surrounded by water with high levels of phosphates, it makes sense to grow Azolla as a substitute for soybeans,” says Schluepmann. “For that to happen, we need massive investments to understand these ferns’ reproductive system and how to replicate that within aquaculture systems on a large scale.”
Pollution control and carbon sequestration
Currently, Schluepmann and her team are growing Azolla in a plant nursery or closed system before transferring the ferns to flooded fields. So far, they have been able to continuously grow Azolla without any major setbacks for a total of 155 days. Taking care of these plants’ well-being is an uphill struggle.
Unlike most plants, Azolla does not grow from seeds because it contains female and male spores that tend to split instead of reproducing. To add to that, growing Azolla on a large scale in controlled environments makes the floating plants extremely vulnerable to insect infestations and fungi attacks.
“Even though it is easier to grow Azolla on a non-industrial scale, the long and tedious cultivation process is often in conflict with human rights,” she says. Farms in developing countries such as Indonesia sometimes use child labor for cultivating Azolla.”
History has taught us that the uncontrolled growth of Azolla plants deprives marine ecosystems of sunlight and chokes life underneath them. But researchers like Schluepmann and Bujak are optimistic that even on a much smaller scale, Azolla can put up a fight against human-driven climate change.
Schluepmann discovered an insecticide that can control Azolla blooms. But in the wild, this aquatic fern grows relentlessly in polluted rivers and lakes and has gained a notorious reputation as an invasive weed. Countries like Portugal and the UK banned Azolla after experiencing severe blooms in rivers that snuffed out local marine life.
“Azolla has been misunderstood as a nuisance. But in reality, it is highly beneficial for purifying water,” says Bujak. Through a process called phytoremediation, Azolla locks up pollutants like excess nitrogen and phosphorus and stops toxic algal blooms from occurring in rivers and lakes.
A 2018 study found that Azolla can decrease nitrogen and phosphorus levels in wastewater by 33 percent and 40.5 percent, respectively. While harmful algae like phytoplankton produce toxins and release noxious gases, Azolla automatically blocks any toxins that its cyanobacteria, Anabaena, might produce.
“In our labs, we observed that Azolla works effectively in treating wastewater,” explains Schluepmann. “Once we gain a better understanding of Azolla aquaculture, we can also use it for carbon capture and storage. But in Europe, we would have to use the entire Baltic Sea to make a difference.”
Planting massive amounts of these prehistoric ferns in any of the Northern great water bodies is out of the question. After all, history has taught us that the uncontrolled growth of Azolla plants deprives marine ecosystems of sunlight and chokes life underneath them. But researchers like Schluepmann and Bujak are optimistic that even on a much smaller scale, Azolla can put up a fight against human-driven climate change.
Traditional carbon capture and storage methods are not only expensive but also inefficient and could increase air pollution. According to Bujak’s estimates, Azolla can sequester 10 metric tonnes of carbon dioxide per hectare annually, which is 10 times the average capacity of grasslands.
“Anyone can set up their own DIY carbon capture and storage system by growing Azolla in shallow water. After harvesting and compressing the plants, carbon dioxide gets stored permanently,” says Bujak.
He envisions scaling up this process by setting up “Azolla hubs” in mega-cities where the plants are grown in shallow trays stacked on top of each other with vertical farming systems built within multi-story buildings. The compressed Azolla plants can then be converted into a biofuel, fertilizer, livestock feed, or biochar for sequestering carbon dioxide.
“Using Azolla to mitigate climate change might sound a bit too simple. But that is not the case,” Bujak adds. “At a microscopic level, extremely complicated biochemical reactions are constantly occurring inside the plant’s cells that machines or technology cannot replicate yet.”
Through Azolla, scientists hope to work with nature by tapping into four billion years of evolution.
From infections with no symptoms to why men are more likely to be hospitalized in the ICU and die of COVID-19, new research shows that your genes play a significant role
Early in the pandemic, genetic research focused on the virus because it was readily available. Plus, the virus contains only 30,000 bases in a dozen functional genes, so it's relatively easy and affordable to sequence. Additionally, the rapid mutation of the virus and its ability to escape antibody control fueled waves of different variants and provided a reason to follow viral genetics.
In comparison, there are many more genes of the human immune system and cellular functions that affect viral replication, with about 3.2 billion base pairs. Human studies require samples from large numbers of people, the analysis of each sample is vastly more complex, and sophisticated computer analysis often is required to make sense of the raw data. All of this takes time and large amounts of money, but important findings are beginning to emerge.
Asymptomatics
About half the people exposed to SARS-CoV-2, the virus that causes the COVID-19 disease, never develop symptoms of this disease, or their symptoms are so mild they often go unnoticed. One piece of understanding the phenomena came when researchers showed that exposure to OC43, a common coronavirus that results in symptoms of a cold, generates immune system T cells that also help protect against SARS-CoV-2.
Jill Hollenbach, an immunologist at the University of California at San Francisco, sought to identify the gene behind that immune protection. Most COVID-19 genetic studies are done with the most seriously ill patients because they are hospitalized and thus available. “But 99 percent of people who get it will never see the inside of a hospital for COVID-19,” she says. “They are home, they are not interacting with the health care system.”
Early in the pandemic, when most labs were shut down, she tapped into the National Bone Marrow Donor Program database. It contains detailed information on donor human leukocyte antigens (HLAs), key genes in the immune system that must match up between donor and recipient for successful transplants of marrow or organs. Each HLA can contain alleles, slight molecular differences in the DNA of the HLA, which can affect its function. Potential HLA combinations can number in the tens of thousands across the world, says Hollenbach, but each person has a smaller number of those possible variants.
She teamed up with the COVID-19 Citizen Science Study a smartphone-based study to track COVID-19 symptoms and outcomes, to ask persons in the bone marrow donor registry about COVID-19. The study enlisted more than 30,000 volunteers. Those volunteers already had their HLAs annotated by the registry, and 1,428 tested positive for the virus.
Analyzing five key HLAs, she found an allele in the gene HLA-B*15:01 that was significantly overrepresented in people who didn’t have any symptoms. The effect was even stronger if a person had inherited the allele from both parents; these persons were “more than eight times more likely to remain asymptomatic than persons who did not carry the genetic variant,” she says. Altogether this HLA was present in about 10 percent of the general European population but double that percentage in the asymptomatic group. Hollenbach and her colleagues were able confirm this in other different groups of patients.
What made the allele so potent against SARS-CoV-2? Part of the answer came from x-ray crystallography. A key element was the molecular shape of parts of the cold virus OC43 and SARS-CoV-2. They were virtually identical, and the allele could bind very tightly to them, present their molecular antigens to T cells, and generate an extremely potent T cell response to the viruses. And “for whatever reasons that generated a lot of memory T cells that are going to stick around for a long time,” says Hollenbach. “This T cell response is very early in infection and ramps up very quickly, even before the antibody response.”
Understanding the genetics of the immune response to SARS-CoV-2 is important because it provides clues into the conditions of T cells and antigens that support a response without any symptoms, she says. “It gives us an opportunity to think about whether this might be a vaccine design strategy.”
Dead men
A researcher at the Leibniz Institute of Virology in Hamburg Germany, Guelsah Gabriel, was drawn to a question at the other end of the COVID-19 spectrum: why men more likely to be hospitalized and die from the infection. It wasn't that men were any more likely to be exposed to the virus but more likely, how their immune system reacted to it
Several studies had noted that testosterone levels were significantly lower in men hospitalized with COVID-19. And, in general, the lower the testosterone, the worse the prognosis. A year after recovery, about 30 percent of men still had lower than normal levels of testosterone, a condition known as hypogonadism. Most of the men also had elevated levels of estradiol, a female hormone (https://pubmed.ncbi.nlm.nih.gov/34402750/).
Every cell has a sex, expressing receptors for male and female hormones on their surface. Hormones docking with these receptors affect the cells' internal function and the signals they send to other cells. The number and role of these receptors varies from tissue to tissue.
Gabriel began her search by examining whole exome sequences, the protein-coding part of the genome, for key enzymes involved in the metabolism of sex hormones. The research team quickly zeroed in on CYP19A1, an enzyme that converts testosterone to estradiol. The gene that produces this enzyme has a number of different alleles, the molecular variants that affect the enzyme's rate of metabolizing the sex hormones. One genetic variant, CYP19A1 (Thr201Met), is typically found in 6.2 percent of all people, both men and women, but remarkably, they found it in 68.7 percent of men who were hospitalized with COVID-19.
Lung surprise
Lungs are the tissue most affected in COVID-19 disease. Gabriel wondered if the virus might be affecting expression of their target gene in the lung so that it produces more of the enzyme that converts testosterone to estradiol. Studying cells in a petri dish, they saw no change in gene expression when they infected cells of lung tissue with influenza and the original SARS-CoV viruses that caused the SARS outbreak in 2002. But exposure to SARS-CoV-2, the virus responsible for COVID-19, increased gene expression up to 40-fold, Gabriel says.
Did the same thing happen in humans? Autopsy examination of patients in three different cites found that “CYP19A1 was abundantly expressed in the lungs of COVID-19 males but not those who died of other respiratory infections,” says Gabriel. This increased enzyme production led likely to higher levels of estradiol in the lungs of men, which “is highly inflammatory, damages the tissue, and can result in fibrosis or scarring that inhibits lung function and repair long after the virus itself has disappeared.” Somehow the virus had acquired the capacity to upregulate expression of CYP19A1.
Only two COVID-19 positive females showed increased expression of this gene. The menopause status of these women, or whether they were on hormone replacement therapy was not known. That could be important because female hormones have a protective effect for cardiovascular disease, which women often lose after going through menopause, especially if they don’t start hormone replacement therapy. That sex-specific protection might also extend to COVID-19 and merits further study.
The team was able to confirm their findings in golden hamsters, the animal model of choice for studying COVID-19. Testosterone levels in male animals dropped 5-fold three days after infection and began to recover as viral levels declined. CYP19A1 transcription increased up to 15-fold in the lungs of the male but not the females. The study authors wrote, “Virus replication in the male lungs was negatively associated with testosterone levels.”
The medical community studying COVID-19 has slowly come to recognize the importance of adipose tissue, or fat cells. They are known to express abundant levels of CYP19A1 and play a significant role as metabolic tissue in COVID-19. Gabriel adds, “One of the key findings of our study is that upon SARS-CoV-2 infection, the lung suddenly turns into a metabolic organ by highly expressing” CYP19A1.
She also found evidence that SARS-CoV-2 can infect the gonads of hamsters, thereby likely depressing circulating levels of sex hormones. The researchers did not have autopsy samples to confirm this in humans, but others have shown that the virus can replicate in those tissues.
A possible treatment
Back in the lab, substituting low and high doses of testosterone in SARS-COV-2 infected male hamsters had opposite effects depending on testosterone dosage used. Gabriel says that hormone levels can vary so much, depending on health status and age and even may change throughout the day, that “it probably is much better to inhibit the enzyme” produced by CYP19A1 than try to balance the hormones.
Results were better with letrozole, a drug approved to treat hypogonadism in males, which reduces estradiol levels. The drug also showed benefit in male hamsters in terms of less severe disease and faster recovery. She says more details need to be worked out in using letrozole to treat COVID-19, but they are talking with hospitals about clinical trials of the drug.
Gabriel has proposed a four hit explanation of how COVID-19 can be so deadly for men: the metabolic quartet. First is the genetic risk factor of CYP19A1 (Thr201Met), then comes SARS-CoV-2 infection that induces even greater expression of this gene and the deleterious increase of estradiol in the lung. Age-related hypogonadism and the heightened inflammation of obesity, known to affect CYP19A1 activity, are contributing factors in this deadly perfect storm of events.
Studying host genetics, says Gabriel, can reveal new mechanisms that yield promising avenues for further study. It’s also uniting different fields of science into a new, collaborative approach they’re calling “infection endocrinology,” she says.
New device finds breast cancer like earthquake detection
Mammograms are necessary breast cancer checks for women as they reach the recommended screening age between 40 and 50 years. Yet, many find the procedure uncomfortable. “I have large breasts, and to be able to image the full breast, the radiographer had to manipulate my breast within the machine, which took time and was quite uncomfortable,” recalls Angela, who preferred not to disclose her last name.
Breast cancer is the most widespread cancer in the world, affecting 2.3 million women in 2020. Screening exams such as mammograms can help find breast cancer early, leading to timely diagnosis and treatment. If this type of cancer is detected before the disease has spread, the 5-year survival rate is 99 percent. But some women forgo mammograms due to concerns about radiation or painful compression of breasts. Other issues, such as low income and a lack of access to healthcare, can also serve as barriers, especially for underserved populations.
Researchers at the University of Canterbury and startup Tiro Medical in Christchurch, New Zealand are hoping their new device—which doesn’t involve any radiation or compression of the breasts—could increase the accuracy of breast cancer screening, broaden access and encourage more women to get checked. They’re digging into clues from the way buildings move in an earthquake to help detect more cases of this disease.
Earthquake engineering inspires new breast cancer screening tech
What’s underneath a surface affects how it vibrates. Earthquake engineers look at the vibrations of swaying buildings to identify the underlying soil and tissue properties. “As the vibration wave travels, it reflects the stiffness of the material between that wave and the surface,” says Geoff Chase, professor of engineering at the University of Canterbury in Christchurch, New Zealand.
Chase is applying this same concept to breasts. Analyzing the surface motion of the breast as it vibrates could reveal the stiffness of the tissues underneath. Regions of high stiffness could point to cancer, given that cancerous breast tissue can be up to 20 times stiffer than normal tissue. “If in essence every woman’s breast is soft soil, then if you have some granite rocks in there, we’re going to see that on the surface,” explains Chase.
The earthquake-inspired device exceeds the 87 percent sensitivity of a 3D mammogram.
That notion underpins a new breast screening device, the brainchild of Chase. Women lie face down, with their breast being screened inside a circular hole and the nipple resting on a small disc called an actuator. The actuator moves up and down, between one and two millimeters, so there’s a small vibration, “almost like having your phone vibrate on your nipple,” says Jessica Fitzjohn, a postdoctoral fellow at the University of Canterbury who collaborated on the device design with Chase.
Cameras surrounding the device take photos of the breast surface motion as it vibrates. The photos are fed into image processing algorithms that convert them into data points. Then, diagnostic algorithms analyze those data points to find any differences in the breast tissue. “We’re looking for that stiffness contrast which could indicate a tumor,” Fitzjohn says.
A nascent yet promising technology
The device has been tested in a clinical trial of 14 women: one with healthy breasts and 13 with a tumor in one breast. The cohort was small but diverse, varying in age, breast volume and tumor size.
Results from the trial yielded a sensitivity rate, or the likelihood of correctly detecting breast cancer, of 85 percent. Meanwhile, the device’s specificity rate, or the probability of diagnosing healthy breasts, was 77 percent. By combining and optimizing certain diagnostic algorithms, the device reached between 92 and 100 percent sensitivity and between 80 and 86 percent specificity, which is comparable to the latest 3D mammogram technology. Called tomosynthesis, these 3D mammograms take a number of sharper, clearer and more detailed 3D images compared to the single 2D image of a conventional mammogram, and have a specificity score of 92 percent. Although the earthquake-inspired device’s specificity is lower, it exceeds the 87 percent sensitivity of a 3D mammogram.
The team hopes that cameras with better resolution can help improve the numbers. And with a limited amount of data in the first trial, the researchers are looking into funding for another clinical trial to validate their results on a larger cohort size.
Additionally, during the trial, the device correctly identified one woman’s breast as healthy, while her prior mammogram gave a false positive. The device correctly identified it as being healthy tissue. It was also able to capture the tiniest tumor at 7 millimeters—around a third of an inch or half as long as an aspirin tablet.
Diagnostic findings from the device are immediate.
When using the earthquake-inspired device, women lie face down, with their breast being screened inside circular holes.
University of Canterbury.
But more testing is needed to “prove the device’s ability to pick up small breast cancers less than 10 to 15 millimeters in size, as we know that finding cancers when they are small is the best way of improving outcomes,” says Richard Annand, a radiologist at Pacific Radiology in New Zealand. He explains that mammography already detects most precancerous lesions, so if the device will only be able to find large masses or lumps it won’t be particularly useful. While not directly involved in administering the clinical trial for the device, Annand was a director at the time for Canterbury Breastcare, where the trial occurred.
Meanwhile, Monique Gary, a breast surgical oncologist and medical director of the Grand View Health Cancer program in Pennsylvania, U.S., is excited to see new technologies advancing breast cancer screening and early detection. But she notes that the device may be challenging for “patients who are unable to lay prone, such as pregnant women as well as those who are differently abled, and this machine might exclude them.” She adds that it would also be interesting to explore how breast implants would impact the device’s vibrational frequency.
Diagnostic findings from the device are immediate, with the results available “before you put your clothes back on,” Chase says. The absence of any radiation is another benefit, though Annand considers it a minor edge “as we know the radiation dose used in mammography is minimal, and the advantages of having a mammogram far outweigh the potential risk of radiation.”
The researchers also conducted a separate ergonomic trial with 40 women to assess the device’s comfort, safety and ease of use. Angela was part of that trial and described the experience as “easy, quick, painless and required no manual intervention from an operator.” And if a person is uncomfortable being topless or having their breasts touched by someone else, “this type of device would make them more comfortable and less exposed,” she says.
While mammograms remain “the ‘gold standard’ in breast imaging, particularly screening, physicians need an option that can be used in combination with mammography.
Fitzjohn acknowledges that “at the moment, it’s quite a crude prototype—it’s just a block that you lie on.” The team prioritized function over form initially, but they’re now planning a few design improvements, including more cushioning for the breasts and the surface where the women lie on.
While mammograms remains “the ‘gold standard’ in breast imaging, particularly screening, physicians need an option that is good at excluding breast cancer when used in combination with mammography, has good availability, is easy to use and is affordable. There is the possibility that the device could fill this role,” Annand says.
Indeed, the researchers envision their new breast screening device as complementary to mammograms—a prescreening tool that could make breast cancer checks widely available. As the device is portable and doesn’t require specialized knowledge to operate, it can be used in clinics, pop-up screening facilities and rural communities. “If it was easily accessible, particularly as part of a checkup with a [general practitioner] or done in a practice the patient is familiar with, it may encourage more women to access this service,” Angela says. For those who find regular mammograms uncomfortable or can’t afford them, the earthquake-inspired device may be an option—and an even better one.
Broadening access could prompt more women to go for screenings, particularly younger women at higher risk of getting breast cancer because of a family history of the disease or specific gene mutations. “If we can provide an option for them then we can catch those cancers earlier,” Fitzjohn syas. “By taking screening to people, we’re increasing patient-centric care.”
With the team aiming to lower the device’s cost to somewhere between five and eight times less than mammography equipment, it would also be valuable for low-to-middle-income nations that are challenged to afford the infrastructure for mammograms or may not have enough skilled radiologists.
For Fitzjohn, the ultimate goal is to “increase equity in breast screening and catch cancer early so we have better outcomes for women who are diagnosed with breast cancer.”