Your Questions Answered About Kids, Teens, and Covid Vaccines
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
This virtual event convened leading scientific and medical experts to address the public's questions and concerns about Covid-19 vaccines in kids and teens. Highlight video below.
DATE:
Thursday, May 13th, 2021
12:30 p.m. - 1:45 p.m. EDT
Dr. H. Dele Davies, M.D., MHCM
Senior Vice Chancellor for Academic Affairs and Dean for Graduate Studies at the University of Nebraska Medical (UNMC). He is an internationally recognized expert in pediatric infectious diseases and a leader in community health.
Dr. Emily Oster, Ph.D.
Professor of Economics at Brown University. She is a best-selling author and parenting guru who has pioneered a method of assessing school safety.
Dr. Tina Q. Tan, M.D.
Professor of Pediatrics at the Feinberg School of Medicine, Northwestern University. She has been involved in several vaccine survey studies that examine the awareness, acceptance, barriers and utilization of recommended preventative vaccines.
Dr. Inci Yildirim, M.D., Ph.D., M.Sc.
Associate Professor of Pediatrics (Infectious Disease); Medical Director, Transplant Infectious Diseases at Yale School of Medicine; Associate Professor of Global Health, Yale Institute for Global Health. She is an investigator for the multi-institutional COVID-19 Prevention Network's (CoVPN) Moderna mRNA-1273 clinical trial for children 6 months to 12 years of age.
About the Event Series
This event is the second of a four-part series co-hosted by Leaps.org, the Aspen Institute Science & Society Program, and the Sabin–Aspen Vaccine Science & Policy Group, with generous support from the Gordon and Betty Moore Foundation and the Howard Hughes Medical Institute.
:
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
We Should Resist Making “Synthetic Embryos” Too Realistic
Ethics needs context. So does science – specifically, science that aims to create bioengineered models of early human embryo development in a dish (hereafter synthetic embryos). Even the term "synthetic embryos" begs for an explanation. What are these? And why would anyone want to create them?
"This knowledge may help scientists understand how certain birth defects are formed and why miscarriages often occur."
First the research context. Synthetic embryos are stem cell-derived simulations of human post-implantation embryos that are designed to mimic a stage of early development called gastrulation. That's the stage—around 14-15 days after fertilization – when embryos begin to form a very primitive body plan (basic dorsal-ventral and anterior-posterior axes, and distinct cell lineages). Researchers are starting to create synthetic embryos in the lab – albeit imperfect and incomplete versions – to learn how gastrulation might unfold in real human embryos embedded unseen in the womb. This knowledge may help scientists understand how certain birth defects are formed and why miscarriages often occur soon after implantation. As such, synthetic embryos are meant to be models of human embryo development, not themselves actually embryos. But will synthetic embryos ever get to the point where they are practically the same thing as "natural" human embryos? That is my concern and why I think researchers should avoid creating synthetic embryos capable of doing everything natural embryos can do.
It may not be too difficult to prevent this slide from synthetic to real. Synthetic embryos must be created using sophisticated 3D culture systems that mimic the complex architecture of human embryos. These complex culture systems also have to incorporate precise microinjection systems to chemically trigger the symmetry-breaking events involved in early body plan formation. In short, synthetic embryos need a heavy dose of engineering to get their biological processes going and to help keep them going. And like most engineered entities, designs can be built into the system early to serve well-considered goals – in our case, the goal of not wanting to create synthetic embryos that are too realistic.
"If one wants to study how car engines work, one can model an engine without also modeling the wheels, transmission, and every other car part together."
A good example of this point is found a report published in Nature Communications where scientists created a human stem cell-based 3D model that faithfully recapitulates the biological events around post-implantation amniotic sac development. Importantly, however, the embryo model they developed lacked several key structures and therefore – despite its partial resemblance to an early human embryo – did not have complete human form and potential. While fulfilling their model's aim of revealing a previously inaccessible early developmental event, the team intentionally did not recreate the entire post-implantation human embryo because they did not want to provoke any ethical concerns, as the lead author told me personally. Besides, creating a complete synthetic embryo was not necessary or scientifically justified for the research question they were pursuing. This example goes to show that researchers can create a synthetic embryo to model specific developmental events they want to study without modeling every aspect of a developing embryo. Likewise – to use a somewhat imprecise but instructive analogy – if one wants to study how car engines work, one can model an engine without also modeling the wheels, transmission, and every other car part together.
A representative "synthetic embryo," which in some ways resembles a post-implantation embryo around 14 days after fertilization.
(Courtesy of Yue Shao)
But why should researchers resist creating complete synthetic embryos? To answer this, we need some policy context. Currently there is an embryo research rule in place – a law in many nations, in others a culturally accepted agreement – that intact human embryos must not be grown for research in the lab for longer than 14 consecutive days after fertilization or the formation of the primitive streak (a faint embryonic band that signals the start of gastrulation). This is commonly referred to as the 14-day rule. It was established in the UK decades ago to carve out a space for meritorious human embryo research while simultaneously assuring the public that researchers won't go too far in cultivating embryos to later developmental stages before destroying them at the end of their studies. Many citizens accepting of pre-implantation stage human embryo research would not have tolerated post-implantation stage embryo use. The 14-day rule was a line in the sand, drawn to protect the advancement of embryo research, which otherwise might have been stifled without this clear stopping point. To date, the 14-day rule has not been revoked anywhere in the world, although new research in extended natural embryo cultivation is starting to put some pressure on it.
"Perhaps the day will come when scientists don't have to apply for research funding under such a dark cloud of anti-science sentiment."
Why does this policy context matter? The creation of complete synthetic embryos could raise serious questions (some of them legal) about whether the 14-day rule applies to these lab entities. Although they can be constructed in far fewer than 14 days, they would, at least in theory, be capable of recapitulating all of a natural embryo's developmental events at the gastrulation stage, thus possibly violating the spirit of the 14-day rule. Embryo research laws and policies worldwide are not ready yet to tackle this issue. Furthermore, professional guidelines issued by the International Society for Stem Cell Research prohibit the culture of any "organized embryo-like cellular structures with human organismal potential" to be cultured past the formation of the primitive streak. Thus, researchers should wait until there is greater clarity on this point, or until the 14-day rule is revised through proper policy-making channels to explicitly exclude complete synthetic embryos from its reach.
I should be clear that I am not basing my recommendations on any anti-embryo-research position per se, or on any metaphysical position regarding the positive moral status of synthetic embryos. Rather, I am concerned about the potential backlash that research on complete synthetic embryos might bring to embryo research in general. I began this essay by saying that ethics needs context. The ethics of synthetic embryo research needs to be considered within the context of today's fraught political environment. Perhaps the day will come when scientists don't have to apply for research funding under such a dark cloud of anti-science sentiment. Until then, however, it is my hope that scientists can fulfill their research aims by working on an array of different but each purposefully incomplete synthetic embryo models to generate, in the aggregate of their published work, a unified portrait of human development such that biologically complete synthetic embryo models will not be necessary.
Editor's Note: Read a different viewpoint here written by a leading New York fertility doctor/researcher.
Where Are the Lab-Grown Replacement Organs?
The headline blared from newspapers all the way back in 2006: "First Lab-Grown Organs Implanted in Humans!" A team from Wake Forest University had biopsied cells from the bladders of patients with spina bifida and used them to create brand new full-size bladders, which they then implanted. Although the bladders had to be emptied via catheter, they were still functioning a few years after implantation, and the public grew confident that doctors had climbed an intermediary step on the way to the medicine of science fiction. Ten years later, though, more than 20 people a day are still dying while waiting for an organ transplant, which leads to a simple question: Where are our fake organs?
"We can make small organs and tissues but we can't make larger ones."
Not coming anytime soon, unfortunately. The company that was created to transition Wake Forest's bladders to the market failed. And while there are a few simple bioengineered skins and cartilages already on the market, they are hardly identical to the real thing. Something like a liver could take another 20 to 25 years, says Shay Soker, professor at Wake Forest's Institute for Regenerative Medicine. "The first barrier is the technology: We can make small organs and tissues but we can't make larger ones," he says. "Also there are several cell types or functions that you can reliably make from stem cells, but not all of them, so the technology of stem cells has to catch up with what the body can do." Finally, he says, you have support the new organ inside the body, providing it with a circulatory and nervous system and integrating it with the immune system.
While these are all challenging problems, circulation appears to be the most intractable. "Tissue's not able to survive if the cells don't have oxygen, and the bigger it gets, the more complex vasculature you need to keep that alive," says Chiara Ghezzi, research professor in the Tufts University Department of Biomedical Engineering. "Vasculature is highly organized in the body. It has a hierarchical structure, with different branches that have different roles depending on where they are." So far, she says, researchers have had trouble scaling up from capillaries to larger vessels that could be grafted onto blood vessels in a patient's body.
"The FDA is still getting its hands and minds around the field of tissue engineering."
Last, but hardly least, is the question of FDA approval. Lab-grown organs are neither drugs nor medical devices, and the agency is not set up to quickly or easily approve new technologies that don't fit into current categories. "The FDA is still getting its hands and minds around the field of tissue engineering," says Soker. "They were not used to that… so it requires the regulatory and financial federal agencies to really help and support these initiatives."
A pencil eraser-size model of the human brain is now being used for drug development and research.
If all of this sounds discouraging, it's worth mentioning some of the incredible progress the field has made since the first strides toward lab-grown organs began nearly 30 years ago: Though full-size replacement organs are still decades away, many labs have diverted their resources into what they consider an intermediate step, developing miniature organs and systems that can be used for drug development and research. This platform will yield more relevant results (Imagine! Testing cardiovascular drugs on an actual human heart!) and require the deaths of far fewer animals. And it's already here: Two years ago, scientists at Ohio State University developed a pencil eraser-size model of the human brain they intend to use for this exact purpose.
Perhaps the most exciting line of research these days is one that at first doesn't seem to have anything to do with bioengineered organs at all. Along with his colleagues, Chandan Sen, Director of the Center for Regenerative Medicine and Cell-based Therapies at Ohio State University, has developed a nanoscale chip that can turn any cell in the body into any other kind of cell—reverting fully differentiated adult cells into, essentially, stem cells, which can then grow into any tissue you want. Sen has used his chip to reprogram skin cells in the bodies of mice into neurons to help them recover from strokes, and blood vessels to save severe leg injuries. "There's this concept of a bioreactor, where you convince an organ to grow outside the body. They're getting more and more sophisticated over time. But to my mind it will never match the sophistication or complexity of the human body," Sen says. "I believe that in order to have an organ that behaves the way you want it to in the live body, you must use the body itself as a bioreactor, not a bunch of electronic gadgetry." There you have it, the next step in artificial organ manufacture is as crazy as it is intuitive: Grow it back where it was in the first place.