DNA Tests for Intelligence Ignore the Real Reasons Why Kids Succeed or Fail
[Editor's Note: This essay is in response to our current Big Question, which we posed to experts with different perspectives: "How should DNA tests for intelligence be used, if at all, by parents and educators?"]
It's 2019. Prenatal genetic tests are being used to help parents select from healthy and diseased eggs. Genetic risk profiles are being created for a range of common diseases. And embryonic gene editing has moved into the clinic. The science community is nearly unanimous on the question of whether we should be consulting our genomes as early as possible to create healthy offspring. If you can predict it, let's prevent it, and the sooner, the better.
There are big issues with IQ genetics that should be considered before parents and educators adopt DNA IQ predictions.
When it comes to care of our babies, kids, and future generations, we are doing things today that we never even dreamed would be possible. But one area that remains murky is the long fraught question of IQ, and whether to use DNA science to tell us something about it. There are big issues with IQ genetics that should be considered before parents and educators adopt DNA IQ predictions.
IQ tests have been around for over a century. They've been used by doctors, teachers, government officials, and a whole host of institutions as a proxy for intelligence, especially in youth. At times in history, test results have been used to determine whether to allow a person to procreate, remain a part of society, or merely stay alive. These abuses seem to be a distant part of our past, and IQ tests have since garnered their fair share of controversy for exhibiting racial and cultural biases. But they continue to be used across society. Indeed, much of the literature aimed at expecting parents justifies its recommendations (more omegas, less formula, etc.) based on promises of raising a baby's IQ.
This is the power of IQ testing sans DNA science. Until recently, the two were separate entities, with IQ tests indicating a coefficient created from individual responses to written questions and genetic tests indicating some disease susceptibility based on a sequence of one's DNA. Yet in recent years, scientists have begun to unlock the secrets of inherited aspects of intelligence with genetic analyses that scan millions of points of variation in DNA. Both bench scientists and direct-to-consumer companies have used these new technologies to find variants associated with exceptional IQ scores. There are a number of tests on the open market that parents and educators can use at will. These tests purport to reveal whether a child is inherently predisposed to be intelligent, and some suggest ways to track them for success.
I started looking into these tests when I was doing research for my book, "Social by Nature: The Promise and Peril of Sociogenomics." This book investigated the new genetic science of social phenomena, like educational attainment and political persuasion, investment strategies, and health habits. I learned that, while many of the scientists doing much of the basic research into these things cautioned that the effects of genetic factors were quite small, most saw testing as one data point among many that could help to somehow level the playing field for young people. The rationale went that in certain circumstances, some needed help more than others. Why not put our collective resources together to help them?
Good nutrition, support at home, and access to healthcare and education make a huge difference in how people do.
Some experts believed so strongly in the power of DNA behavioral prediction that they argued it would be unfair not to use predictors to determine a kid's future, prevent negative outcomes, and promote the possibility for positive ones. The educators out in the wider world that I spoke with agreed. With careful attention, they thought sociogenomic tests could help young people get the push they needed when they possessed DNA sequences that weren't working in their favor. Officials working with troubled youth told me they hoped DNA data could be marshaled early enough that kids would thrive at home and in school, thereby avoiding ending up in their care. While my conversations with folks centered around sociogenomic data in general, genetic IQ prediction was completely entangled in it all.
I present these prevailing views to demonstrate both the widespread appeal of genetic predictors as well as the well-meaning intentions of those in favor of using them. It's a truly progressive notion to help those who need help the most. But we must question whether genetic predictors are data points worth looking at.
When we examine the way DNA IQ predictors are generated, we see scientists grouping people with similar IQ test results and academic achievements, and then searching for the DNA those people have in common. But there's a lot more to scores and achievements than meets the eye. Good nutrition, support at home, and access to healthcare and education make a huge difference in how people do. Therefore, the first problem with using DNA IQ predictors is that the data points themselves may be compromised by numerous inaccuracies.
We must then ask ourselves where the deep, enduring inequities in our society are really coming from. A deluge of research has shown that poor life outcomes are a product of social inequalities, like toxic living conditions, underfunded schools, and unhealthy jobs. A wealth of research has also shown that race, gender, sexuality, and class heavily influence life outcomes in numerous ways. Parents and caregivers feed, talk, and play differently with babies of different genders. Teachers treat girls and boys, as well as members of different racial and ethnic backgrounds, differently to the point where they do better and worse in different subject areas.
Healthcare providers consistently racially profile, using diagnostics and prescribing therapies differently for the same health conditions. Access to good schools and healthcare are strongly mitigated by one's race and socioeconomic status. But even youth from privileged backgrounds suffer worse health and life outcomes when they identify or are identified as queer. These are but a few examples of the ways in which social inequities affect our chances in life. Therefore, the second problem with using DNA IQ predictors is that it obscures these very real, and frankly lethal, determinants. Instead of attending to the social environment, parents and educators take inborn genetics as the reason for a child's successes or failures.
It is time that we shift our priorities from seeking genetic causes to fixing the social causes we know to be real.
The other problem with using DNA IQ predictors is that research into the weightiness of DNA evidence has shown time and again that people take DNA evidence more seriously than they do other kinds of evidence. So it's not realistic to say that we can just consider IQ genetics as merely one tiny data point. People will always give more weight to DNA evidence than it deserves. And given its proven negligible effect, it would be irresponsible to do so.
It is time that we shift our priorities from seeking genetic causes to fixing the social causes we know to be real. Parents and educators need to be wary of solutions aimed at them and their individual children.
[Editor's Note: Read another perspective in the series here.]
Here's how one doctor overcame extraordinary odds to help create the birth control pill
Dr. Percy Julian had so many personal and professional obstacles throughout his life, it’s amazing he was able to accomplish anything at all. But this hidden figure not only overcame these incredible obstacles, he also laid the foundation for the creation of the birth control pill.
Julian’s first obstacle was growing up in the Jim Crow-era south in the early part of the twentieth century, where racial segregation kept many African-Americans out of schools, libraries, parks, restaurants, and more. Despite limited opportunities and education, Julian was accepted to DePauw University in Indiana, where he majored in chemistry. But in college, Julian encountered another obstacle: he wasn’t allowed to stay in DePauw’s student housing because of segregation. Julian found lodging in an off-campus boarding house that refused to serve him meals. To pay for his room, board, and food, Julian waited tables and fired furnaces while he studied chemistry full-time. Incredibly, he graduated in 1920 as valedictorian of his class.
After graduation, Julian landed a fellowship at Harvard University to study chemistry—but here, Julian ran into yet another obstacle. Harvard thought that white students would resent being taught by Julian, an African-American man, so they withdrew his teaching assistantship. Julian instead decided to complete his PhD at the University of Vienna in Austria. When he did, he became one of the first African Americans to ever receive a PhD in chemistry.
Julian received offers for professorships, fellowships, and jobs throughout the 1930s, due to his impressive qualifications—but these offers were almost always revoked when schools or potential employers found out Julian was black. In one instance, Julian was offered a job at the Institute of Paper Chemistory in Appleton, Wisconsin—but Appleton, like many cities in the United States at the time, was known as a “sundown town,” which meant that black people weren’t allowed to be there after dark. As a result, Julian lost the job.
During this time, Julian became an expert at synthesis, which is the process of turning one substance into another through a series of planned chemical reactions. Julian synthesized a plant compound called physostigmine, which would later become a treatment for an eye disease called glaucoma.
In 1936, Julian was finally able to land—and keep—a job at Glidden, and there he found a way to extract soybean protein. This was used to produce a fire-retardant foam used in fire extinguishers to smother oil and gasoline fires aboard ships and aircraft carriers, and it ended up saving the lives of thousands of soldiers during World War II.
At Glidden, Julian found a way to synthesize human sex hormones such as progesterone, estrogen, and testosterone, from plants. This was a hugely profitable discovery for his company—but it also meant that clinicians now had huge quantities of these hormones, making hormone therapy cheaper and easier to come by. His work also laid the foundation for the creation of hormonal birth control: Without the ability to synthesize these hormones, hormonal birth control would not exist.
Julian left Glidden in the 1950s and formed his own company, called Julian Laboratories, outside of Chicago, where he manufactured steroids and conducted his own research. The company turned profitable within a year, but even so Julian’s obstacles weren’t over. In 1950 and 1951, Julian’s home was firebombed and attacked with dynamite, with his family inside. Julian often had to sit out on the front porch of his home with a shotgun to protect his family from violence.
But despite years of racism and violence, Julian’s story has a happy ending. Julian’s family was eventually welcomed into the neighborhood and protected from future attacks (Julian’s daughter lives there to this day). Julian then became one of the country’s first black millionaires when he sold his company in the 1960s.
When Julian passed away at the age of 76, he had more than 130 chemical patents to his name and left behind a body of work that benefits people to this day.
Therapies for Healthy Aging with Dr. Alexandra Bause
My guest today is Dr. Alexandra Bause, a biologist who has dedicated her career to advancing health, medicine and healthier human lifespans. Dr. Bause co-founded a company called Apollo Health Ventures in 2017. Currently a venture partner at Apollo, she's immersed in the discoveries underway in Apollo’s Venture Lab while the company focuses on assembling a team of investors to support progress. Dr. Bause and Apollo Health Ventures say that biotech is at “an inflection point” and is set to become a driver of important change and economic value.
Previously, Dr. Bause worked at the Boston Consulting Group in its healthcare practice specializing in biopharma strategy, among other priorities
She did her PhD studies at Harvard Medical School focusing on molecular mechanisms that contribute to cellular aging, and she’s also a trained pharmacist
In the episode, we talk about the present and future of therapeutics that could increase people’s spans of health, the benefits of certain lifestyle practice, the best use of electronic wearables for these purposes, and much more.
Dr. Bause is at the forefront of developing interventions that target the aging process with the aim of ensuring that all of us can have healthier, more productive lifespans.