The science of slowing down aging - even if you're not a tech billionaire
Earlier this year, Harvard scientists reported that they used an anti-aging therapy to reverse blindness in elderly mice. Several other studies in the past decade have suggested that the aging process can be modified, at least in lab organisms. Considering mice and humans share virtually the same genetic makeup, what does the rodent-based study mean for the humans?
In truth, we don’t know. Maybe nothing.
What we do know, however, is that a growing number of people are dedicating themselves to defying the aging process, to turning back the clock – the biological clock, that is. Take Bryan Johnson, a man who is less mouse than human guinea pig. A very wealthy guinea pig.
The 45-year-old venture capitalist spends over $2 million per year reversing his biological clock. To do this, he employs a team of 30 medical doctors and other scientists. His goal is to eventually reset his biological clock to age 18, and “have all of his major organs — including his brain, liver, kidneys, teeth, skin, hair, penis and rectum — functioning as they were in his late teens,” according to a story earlier this year in the New York Post.
But his daily routine paints a picture that is far from appealing: for example, rigorously adhering to a sleep schedule of 8 p.m. to 5 a.m. and consuming more than 100 pills and precisely 1,977 calories daily. Considering all of Johnson’s sacrifices, one discovers a paradox:
To live forever, he must die a little every day until he reaches his goal - if he ever reaches his goal.
Less extreme examples seem more helpful for people interested in happy, healthy aging. Enter Chris Mirabile, a New Yorker who says on his website, SlowMyAge.com, that he successfully reversed his biological age by 13.6 years, from the chronological age of 37.2 to a biological age of 23.6. To put this achievement in perspective, Johnson, to date, has reversed his biological clock by 2.5 years.
Mirabile's habits and overall quest to turn back the clock trace back to a harrowing experience at age 16 during a school trip to Manhattan, when he woke up on the floor with his shirt soaked in blood.
Mirabile, who is now 38, supports his claim with blood tests that purport to measure biological age by assessing changes to a person’s epigenome, or the chemical marks that affect how genes are expressed. Mirabile’s tests have been run and verified independently by the same scientific lab that analyzes Johnson’s. (In an email to Leaps.org, the lab, TruDiagnostic, confirmed Mirabile’s claims about his test results.)
There is considerable uncertainty among scientists about the extent to which these tests can accurately measure biological age in individuals. Even so, Mirabile’s results are intriguing. They could reflect his smart lifestyle for healthy aging.
His habits and overall quest to turn back the clock trace back to a harrowing experience at age 16 during a school trip to Manhattan, when Mirabile woke up on the floor with his shirt soaked in blood. He’d severed his tongue after a seizure. He later learned it was caused by a tumor the size of a golf ball. As a result, “I found myself contemplating my life, what I had yet to experience, and mortality – a theme that stuck with me during my year of recovery and beyond,” Mirabile told me.
For the next 15 years, he researched health and biology, integrating his learnings into his lifestyle. Then, in his early 30s, he came across an article in the journal Cell, "The Hallmarks of Aging," that outlined nine mechanisms of the body that define the aging process. Although the paper says there are no known interventions to delay some of these mechanisms, others, such as inflammation, struck Mirabile as actionable. Reading the paper was his “moment of epiphany” when it came to the areas where he could assert control to maximize his longevity.
He also wanted “to create a resource that my family, friends, and community could benefit from in the short term,” he said. He turned this knowledge base into a company called NOVOS dedicated to extending lifespan.
His longevity advice is more accessible than Johnson’s multi-million dollar approach, as Mirabile spends a fraction of that amount. Mirabile takes one epigenetic test per year and has a gym membership at $45 per month. Unlike Johnson, who takes 100 pills per day, Mirabile takes 10, costing another $45 monthly, including a B-complex, fish oil, Vitamins D3 and K2, and two different multivitamin supplements.
Mirabile’s methods may be easier to apply in other ways as well, since they include activities that many people enjoy anyway. He’s passionate about outdoor activities, travels frequently, and has loving relationships with friends and family, including his girlfriend and collie.
Here are a few of daily routines that could, he thinks, contribute to his impressively young bio age:
After waking at 7:45 am, he immediately drinks 16 ounces of water, with 1/4 teaspoon of sodium and potassium to replenish electrolytes. He takes his morning vitamins, brushes and flosses his teeth, puts on a facial moisturizing sunblock and goes for a brisk, two-mile walk in the sun. At 8:30 am on Mondays, Wednesdays, and Fridays he lift weights, focusing on strength and power, especially in large muscle groups.
Tuesdays, Thursdays and Saturdays are intense cardio days. He runs 5-7 miles or bicycles for 60 minutes first thing in the morning at a brisk pace, listening to podcasts. Sunday morning cardio is more leisurely.
After working out each day, he’s back home at 9:20 am, where he makes black coffee, showers, then applies serum and moisturizing sunblock to his face. He works for about three hours on his laptop, then has a protein shake and fruit.
Mirabile is a dedicated intermittent faster, with a six hour eating window in between 18 hours fasts. At 3 pm, he has lunch. The Mediterranean lineup often features salmon, sardines, olive oil, pink Himalayan salt plus potassium salt for balance, and lots of dried herbs and spices. He almost always finishes with 1/3 to 1/2 bar of dark chocolate.
If you are what you eat, Mirabile is made of mostly plants and lean meats. He follows a Mediterranean diet full of vegetables, fruits, fatty fish and other meats full of protein and unsaturated fats. “These may cost more than a meal at an American fast-food joint, but then again, not by much,” he said. Each day, he spends $25 on all his meals combined.
At 6 pm, he takes the dog out for a two-mile walk, taking calls for work or from family members along the way. At 7 pm, he dines with his girlfriend. Like lunch, this meal is heavy on widely available ingredients, including fish, fresh garlic, and fermented food like kimchi. Mirabile finishes this meal with sweets, like coconut milk yogurt with cinnamon and clove, some stevia, a mix of fresh berries and cacao nibs.
If Mirabile's epigenetic tests are accurate, his young biological age could be thanks to his healthy lifestyle, or it could come from a stroke of luck if he inherited genes that protect against aging.
At 8 pm, he wraps up work duties and watches shows with his girlfriend, applies serum and moisturizer yet again, and then meditates with the lights off. This wind-down, he said, improves his sleep quality. Wearing a sleep mask and earplugs, he’s asleep by about 10:30.
“I’ve achieved stellar health outcomes, even after having had the physiological stressors of a brain tumor, without spending a fortune,” Mirabile said. “In fact, even during times when I wasn’t making much money as a startup founder with few savings, I still managed to live a very healthy, pro-longevity lifestyle on a modest budget.”
Mirabile said living a cleaner, healthier existence is a reality that many readers can achieve. It’s certainly true that many people live in food deserts and have limited time for exercise or no access to gyms, but James R. Doty, a clinical professor of neurosurgery at Stanford, thinks many can take more action to stack the odds that they’ll “be happy and live longer.” Many of his recommendations echo aspects of Mirabile’s lifestyle.
Each night, Doty said, it’s vital to get anywhere between 6-8 hours of good quality sleep. Those who sleep less than 6 hours per night are at an increased risk of developing a whole host of medical problems, including high blood pressure, type 2 diabetes, and stroke.
In addition, it’s critical to follow Mirabile’s prescription of exercise for about one hour each day, and intensity levels matter. Doty noted that, in 2017, researchers at Brigham Young University found that people who ran at a fast pace for 30-40 minutes five days per week were, on average, biologically younger by nine years, compared to those who subscribed to more moderate exercise programs, as well as those who rarely exercised.
When it comes to nutrition, one should consider fasting for 16 hours per day, Doty said. This is known as the 16/8 method, where one’s daily calories are consumed within an eight hour window, fasting for the remaining 16 hours, just like Mirabile. Intermittent fasting is associated with cellular repair and less inflammation, though it’s not for everyone, Doty added. Consult with a medical professional before trying a fasting regimen.
Finally, Doty advised to “avoid anger, avoid stress.” Easier said than done, but not impossible. “Between stimulus and response, there is a pause and within that pause lies your freedom,” Doty said. Mirabile’s daily meditation ritual could be key to lower stress for healthy aging. Research has linked regular, long-term meditation to having a lower epigenetic age, compared to control groups.
Many other factors could apply. Having a life purpose, as Mirabile does with his company, has also been associated with healthy aging and lower epigenetic age. Of course, Mirabile is just one person, so it’s hard to know how his experience will apply to others. If his tests are accurate, his young biological age could be thanks to his healthy lifestyle, or it could come from a stroke of luck if he inherited genes that protect against aging. Clearly, though, any such genes did not protect him from cancer at an early age.
The third and perhaps most likely explanation: Mirabile’s very young biological age results from a combination of these factors. Some research shows that genetics account for only 25 percent of longevity. That means environmental factors could be driving the other 75 percent, such as where you live, frequency of exercise, quality of nutrition and social support.
The middle-aged – even Brian Johnson – probably can’t ever be 18 again. But more modest goals are reasonable for many. Control what you can for a longer, healthier life.
Can blockchain help solve the Henrietta Lacks problem?
Science has come a long way since Henrietta Lacks, a Black woman from Baltimore, succumbed to cervical cancer at age 31 in 1951 -- only eight months after her diagnosis. Since then, research involving her cancer cells has advanced scientific understanding of the human papilloma virus, polio vaccines, medications for HIV/AIDS and in vitro fertilization.
Today, the World Health Organization reports that those cells are essential in mounting a COVID-19 response. But they were commercialized without the awareness or permission of Lacks or her family, who have filed a lawsuit against a biotech company for profiting from these “HeLa” cells.
While obtaining an individual's informed consent has become standard procedure before the use of tissues in medical research, many patients still don’t know what happens to their samples. Now, a new phone-based app is aiming to change that.
Tissue donors can track what scientists do with their samples while safeguarding privacy, through a pilot program initiated in October by researchers at the Johns Hopkins Berman Institute of Bioethics and the University of Pittsburgh’s Institute for Precision Medicine. The program uses blockchain technology to offer patients this opportunity through the University of Pittsburgh's Breast Disease Research Repository, while assuring that their identities remain anonymous to investigators.
A blockchain is a digital, tamper-proof ledger of transactions duplicated and distributed across a computer system network. Whenever a transaction occurs with a patient’s sample, multiple stakeholders can track it while the owner’s identity remains encrypted. Special certificates called “nonfungible tokens,” or NFTs, represent patients’ unique samples on a trusted and widely used blockchain that reinforces transparency.
Blockchain could be used to notify people if cancer researchers discover that they have certain risk factors.
“Healthcare is very data rich, but control of that data often does not lie with the patient,” said Julius Bogdan, vice president of analytics for North America at the Healthcare Information and Management Systems Society (HIMSS), a Chicago-based global technology nonprofit. “NFTs allow for the encapsulation of a patient’s data in a digital asset controlled by the patient.” He added that this technology enables a more secure and informed method of participating in clinical and research trials.
Without this technology, de-identification of patients’ samples during biomedical research had the unintended consequence of preventing them from discovering what researchers find -- even if that data could benefit their health. A solution was urgently needed, said Marielle Gross, assistant professor of obstetrics, gynecology and reproductive science and bioethics at the University of Pittsburgh School of Medicine.
“A researcher can learn something from your bio samples or medical records that could be life-saving information for you, and they have no way to let you or your doctor know,” said Gross, who is also an affiliate assistant professor at the Berman Institute. “There’s no good reason for that to stay the way that it is.”
For instance, blockchain could be used to notify people if cancer researchers discover that they have certain risk factors. Gross estimated that less than half of breast cancer patients are tested for mutations in BRCA1 and BRCA2 — tumor suppressor genes that are important in combating cancer. With normal function, these genes help prevent breast, ovarian and other cells from proliferating in an uncontrolled manner. If researchers find mutations, it’s relevant for a patient’s and family’s follow-up care — and that’s a prime example of how this newly designed app could play a life-saving role, she said.
Liz Burton was one of the first patients at the University of Pittsburgh to opt for the app -- called de-bi, which is short for decentralized biobank -- before undergoing a mastectomy for early-stage breast cancer in November, after it was diagnosed on a routine mammogram. She often takes part in medical research and looks forward to tracking her tissues.
“Anytime there’s a scientific experiment or study, I’m quick to participate -- to advance my own wellness as well as knowledge in general,” said Burton, 49, a life insurance service representative who lives in Carnegie, Pa. “It’s my way of contributing.”
Liz Burton was one of the first patients at the University of Pittsburgh to opt for the app before undergoing a mastectomy for early-stage breast cancer.
Liz Burton
The pilot program raises the issue of what investigators may owe study participants, especially since certain populations, such as Black and indigenous peoples, historically were not treated in an ethical manner for scientific purposes. “It’s a truly laudable effort,” Tamar Schiff, a postdoctoral fellow in medical ethics at New York University’s Grossman School of Medicine, said of the endeavor. “Research participants are beautifully altruistic.”
Lauren Sankary, a bioethicist and associate director of the neuroethics program at Cleveland Clinic, agrees that the pilot program provides increased transparency for study participants regarding how scientists use their tissues while acknowledging individuals’ contributions to research.
However, she added, “it may require researchers to develop a process for ongoing communication to be responsive to additional input from research participants.”
Peter H. Schwartz, professor of medicine and director of Indiana University’s Center for Bioethics in Indianapolis, said the program is promising, but he wonders what will happen if a patient has concerns about a particular research project involving their tissues.
“I can imagine a situation where a patient objects to their sample being used for some disease they’ve never heard about, or which carries some kind of stigma like a mental illness,” Schwartz said, noting that researchers would have to evaluate how to react. “There’s no simple answer to those questions, but the technology has to be assessed with an eye to the problems it could raise.”
To truly make a difference, blockchain must enable broad consent from patients, not just de-identification.
As a result, researchers may need to factor in how much information to share with patients and how to explain it, Schiff said. There are also concerns that in tracking their samples, patients could tell others what they learned before researchers are ready to publicly release this information. However, Bogdan, the vice president of the HIMSS nonprofit, believes only a minimal study identifier would be stored in an NFT, not patient data, research results or any type of proprietary trial information.
Some patients may be confused by blockchain and reluctant to embrace it. “The complexity of NFTs may prevent the average citizen from capitalizing on their potential or vendors willing to participate in the blockchain network,” Bogdan said. “Blockchain technology is also quite costly in terms of computational power and energy consumption, contributing to greenhouse gas emissions and climate change.”
In addition, this nascent, groundbreaking technology is immature and vulnerable to data security flaws, disputes over intellectual property rights and privacy issues, though it does offer baseline protections to maintain confidentiality. To truly make a difference, blockchain must enable broad consent from patients, not just de-identification, said Robyn Shapiro, a bioethicist and founding attorney at Health Sciences Law Group near Milwaukee.
The Henrietta Lacks story is a prime example, Shapiro noted. During her treatment for cervical cancer at Johns Hopkins, Lacks’s tissue was de-identified (albeit not entirely, because her cell line, HeLa, bore her initials). After her death, those cells were replicated and distributed for important and lucrative research and product development purposes without her knowledge or consent.
Nonetheless, Shapiro thinks that the initiative by the University of Pittsburgh and Johns Hopkins has potential to solve some ethical challenges involved in research use of biospecimens. “Compared to the system that allowed Lacks’s cells to be used without her permission, Shapiro said, “blockchain technology using nonfungible tokens that allow patients to follow their samples may enhance transparency, accountability and respect for persons who contribute their tissue and clinical data for research.”
Read more about laws that have prevented people from the rights to their own cells.
New tech for prison reform spreads to 11 states
A new non-profit called Recidiviz is using data technology to reduce the size of the U.S. criminal justice system. The bi-coastal company (SF and NYC) is currently working with 11 states to improve their systems and, so far, has helped remove nearly 69,000 people — ones left floundering in jail or on parole when they should have been released.
“The root cause is fragmentation,” says Clementine Jacoby, 31, a software engineer who worked at Google before co-founding Recidiviz in 2019. In the 1970s and 80s, the U.S. built a series of disconnected data systems, and this patchwork is still being used by criminal justice authorities today. It requires parole officers to manually calculate release dates, leading to errors in many cases. “[They] have done everything they need to do to earn their release, but they're still stuck in the system,” Jacoby says.
Recidiviz has built a platform that connects the different databases, with the goal of identifying people who are already qualified for release but remain behind bars or on supervision. “Think of Recidiviz like Google Maps,” says Jacoby, who worked on Maps when she was at the tech giant. Google Maps takes in data from different sources – satellite images, street maps, local business data — and organizes it into one easy view. “Recidiviz does something similar with criminal justice data,” Jacoby explains, “making it easy to identify people eligible to come home or to move to less intensive levels of supervision.”
People like Jacoby’s uncle. His experience with incarceration is what inspired her passion for criminal justice reform in the first place.
The problems are vast
The U.S. has the highest incarceration rate in the world — 2 million people according to the watchdog group, Prison Policy Initiative — at a cost of $182 billion a year. The numbers could be a lot lower if not for an array of problems including inaccurate sentencing calculations, flawed algorithms and parole violations laws.
Sentencing miscalculations
To determine eligibility for release, the current system requires corrections officers to check 21 different requirements spread across five different databases for each of the 90 to 100 people under their supervision. These manual calculations are time prohibitive, says Jacoby, and fall victim to human error.
In addition, Recidiviz found that policies aimed at helping to reduce the prison population don’t always work correctly. A key example is time off for good behavior laws that allow inmates to earn one day off for every 30 days of good behavior. Some states' data systems are built to calculate time off as one day per month of good behavior, rather than per day. Over the course of a decade-long sentence, Jacoby says these miscalculations can lead to a huge discrepancy in the calculated release data and the actual release date.
Algorithms
Commercial algorithm-based software systems for risk assessment continue to be widely used in the criminal justice system, even though a 2018 study published in Science Advances exposed their limitations. After the study went viral, it took three years for the Justice Department to issue a report on their own flawed algorithms used to reduce the federal prison population as part of the 2018 First Step Act. The program, it was determined, overestimated the risk of putting inmates of color into early-release programs.
Despite its name, Recidiviz does not build these types of algorithms for predicting recidivism, or whether someone will commit another crime after being released from prison. Rather, Jacoby says the company’s "descriptive analytics” approach is specifically intended to weed out incarceration inequalities and avoid algorithmic pitfalls.
Parole violation laws
Research shows that 350,000 people a year — about a quarter of the total prison population — are sent back not because they’ve committed another crime, but because they’ve broken a specific rule of their probation. “Things that wouldn't send you or I to prison, but would send someone on parole,” such as crossing county lines or being in the presence of alcohol when they shouldn’t be, are inflating the prison population, says Jacoby.
It’s personal for the co-founder and CEO
“I grew up with an uncle who went into the prison system,” Jacoby says. At 19, he was sentenced to ten years in prison for a non-violent crime. A few months after being released from jail, he was sent back for a non-violent parole violation.
“For my family, the fact that one in four prison admissions are driven not by a crime but by someone who's broken a rule on probation and parole was really profound because that happened to my uncle,” Jacoby says. The experience led her to begin studying criminal justice in high school, then college. She continued her dive into how the criminal justice system works as part of her Passion Project while at Google, a program that allows employees to spend 20 percent of their time on pro-bono work. Two colleagues whose family members had also been stuck in the system joined her.
As part of the project, Jacoby interviewed hundreds of people involved in the criminal justice system. “Those on the right, those on the left, agreed that bad data was slowing down reform,” she says. Their research brought them to North Dakota where they began to understand the root of the problem. The corrections department is making “huge, consequential decisions every day [without] … the data,” Jacoby says. In a new video by Recidiviz not yet released, Jacoby recounts her exchange with the state’s director of corrections who told her, “‘It’s not that we have the data and we just don’t know how to make it public; we don’t have the information you think we have.'"
A mock-up (with fake data) of the types of dashboards and insights that Recidiviz provides to state governments.
Recidiviz
As a software engineer, Jacoby says the comment made no sense to her — until she witnessed it first-hand. “We spent a lot of time driving around in cars with corrections directors and parole officers watching them use these incredibly taxing, frankly terrible, old data systems,” Jacoby says.
As they weeded through thousands of files — some computerized, some on paper — they unearthed the consequences of bad data: Hundreds of people in prison well past their release date and thousands more whose release from parole was delayed because of minor paperwork issues. They found individuals stuck in parole because they hadn’t checked one last item off their eligibility list — like simply failing to provide their parole officer with a paystub. And, even when parolees advocated for themselves, the archaic system made it difficult for their parole officers to confirm their eligibility, so they remained in the system. Jacoby and her team also unpacked specific policies that drive racial disparities — such as fines and fees.
The Solution
It’s more than a trivial technical challenge to bring the incomplete, fragmented data onto a 21st century data platform. It takes months for Recidiviz to sift through a state’s information systems to connect databases “with the goal of tracking a person all the way through their journey and find out what’s working for 18- to 25-year-old men, what’s working for new mothers,” explains Jacoby in the video.
TED Talk: How bad data traps people in the U.S. justice system
TED Fellow Clementine Jacoby's TED Talk went live on Jan. 13. It describes how we can fix bad data in the criminal justice system, "bringing thousands of people home, reducing costs and improving public safety along the way."
Clementine Jacoby • TED2022
Ojmarrh Mitchell, an associate professor in the School of Criminology and Criminal Justice at Arizona State University, who is not involved with the company, says what Recidiviz is doing is “remarkable.” His perspective goes beyond academic analysis. In his pre-academic years, Mitchell was a probation officer, working within the framework of the “well known, but invisible” information sharing issues that plague criminal justice departments. The flexibility of Recidiviz’s approach is what makes it especially innovative, he says. “They identify the specific gaps in each jurisdiction and tailor a solution for that jurisdiction.”
On the downside, the process used by Recidiviz is “a bit opaque,” Mitchell says, with few details available on how Recidiviz designs its tools and tracks outcomes. By sharing more information about how its actions lead to progress in a given jurisdiction, Recidiviz could help reformers in other places figure out which programs have the best potential to work well.
The eleven states in which Recidiviz is working include California, Colorado, Maine, Michigan, Missouri, Pennsylvania and Tennessee. And a pilot program launched last year in Idaho, if scaled nationally, with could reduce the number of people in the criminal justice system by a quarter of a million people, Jacoby says. As part of the pilot, rather than relying on manual calculations, Recidiviz is equipping leaders and the probation officers with actionable information with a few clicks of an app that Recidiviz built.
Mitchell is disappointed that there’s even the need for Recidiviz. “This is a problem that government agencies have a responsibility to address,” he says. “But they haven’t.” For one company to come along and fill such a large gap is “remarkable.”