Feature Story

Genomic Data Has a Diversity Problem, But Global Efforts Are Underway to Fix It

Genetic data sets skew too European, threatening to narrow who will benefit from future advances.

Louis Reed on Unsplash

Genomics has begun its golden age. Just 20 years ago, sequencing a single genome cost nearly $3 billion and took over a decade. Today, the same feat can be achieved for a few hundred dollars and the better part of a day . Suddenly, the prospect of sequencing not just individuals, but whole populations, has become feasible.

The genetic differences between humans may seem meager, only around 0.1 percent of the genome on average, but this variation can have profound effects on an individual's risk of disease, responsiveness to medication, and even the dosage level that would work best.

Already, initiatives like the U.K.'s 100,000 Genomes Project - now expanding to 1 million genomes - and other similarly massive sequencing projects in Iceland and the U.S., have begun collecting population-scale data in order to capture and study this variation.

Keep Reading Keep Reading
Farhan Mitha
Farhan Mitha is a freelance science writer based in London. He regularly writes about biotechnology, synthetic biology, and natural history, and is currently studying for a master's degree in Evolutionary Genomics. Find him on Twitter @FarhanMitha.
A Doctor Who Treated His Own Rare Disease Is Tracking COVID-19 Treatments Hiding In Plain Sight

Dr. David Fajgenbaum looking through a microscope at his lab.

Courtesy of Fajgenbaum

In late March, just as the COVID-19 pandemic was ramping up in the United States, David Fajgenbaum, a physician-scientist at the University of Pennsylvania, devised a 10-day challenge for his lab: they would sift through 1,000 recently published scientific papers documenting cases of the deadly virus from around the world, pluck out the names of any drugs used in an attempt to cure patients, and track the treatments and their outcomes in a database.

Before late 2019, no one had ever had to treat this exact disease before, which meant all treatments would be trial and error. Fajgenbaum, a pioneering researcher in the field of drug repurposing—which prioritizes finding novel uses for existing drugs, rather than arduously and expensively developing new ones for each new disease—knew that physicians around the world would be embarking on an experimental journey, the scale of which would be unprecedented. His intention was to briefly document the early days of this potentially illuminating free-for-all, as a sidebar to his primary field of research on a group of lymph node disorders called Castleman disease. But now, 11 months and 29,000 scientific papers later, he and his team of 22 are still going strong.

Keep Reading Keep Reading
Julia Sklar
Julia Sklar is a Boston-based independent journalist who covers science, health, and technology. You can follow her on Twitter at @jfsklar.
For Kids with Progeria, New Therapies May Offer Revolutionary Hope for a Longer Life

Sammy Basso is one of around 400 young people in the world with progeria.

Courtesy of Basso

Sammy Basso has some profound ideas about fate. As long as he has been alive, he has known he has minimal control over his own. His parents, however, had to transition from a world of unlimited possibility to one in which their son might not live to his 20s.

"I remember very clearly that day because Sammy was three years old," his mother says of the day a genetic counselor diagnosed Sammy with progeria. "It was a devastating day for me."

But to Sammy, he has always been himself: a smart kid, interested in science, a little smaller than his classmates, with one notable kink in his DNA. In one copy of the gene that codes for the protein Lamin A, Sammy has a T where there should be a C. The incorrect code creates a toxic protein called progerin, which destabilizes Sammy's cells and makes him age much faster than a person who doesn't have the mutation. The older he gets, the more he is in danger of strokes, heart failure, or a heart attack. "I am okay with my situation," he says from his home in Tezze sul Brenta, Italy. "But I think, yes, fate has a great role in my life."

Keep Reading Keep Reading
Jacqueline Detwiler-George
Jacqueline Detwiler is a contributing editor to Popular Mechanics and former host of The Most Useful Podcast Ever. She writes about science, adventure, travel, and technology. For stories, she has embedded with high school students in Indianapolis, jumped out of a plane with a member of the Red Bull Air Force, and travelled the country searching for the cure for cancer. Most recently, she trailed the Baltimore Police Department's Crime Scene Investigation team for a book for Simon & Schuster's Masters at Work series.