A Million Patients Have Innovated Their Own Medical Solutions, And Doctors Are Terrified
In the fall of 2017, patient advocate Renza Scibilia told a conference of endocrinologists in Australia about new, patient-developed artificial pancreas technology that helped her manage her Type 1 diabetes.
"Because it's not a regulated product, some [doctors] were worried and said 'What if it goes wrong?'"
"They were in equal measure really interested and really scared," recalled Scibilia. "Because it's not a regulated product, some were worried and said 'What if it goes wrong? What is my liability going to be?'"
That was two years ago. Asked if physicians have been more receptive to the same "looping" technology now that its benefits have been supported by considerable data (as Leapsmag pointed out in May), Scibilia said, "No. Clinicians are still really insecure. They're always going to be reluctant to accept consumer-driven technology."
This exemplifies a major challenge to the growing Do-It-Yourself (DIY) biohealth movement: physicians are unnerved and worried about innovations developed by patients and other consumers that haven't been tested in elaborate clinical trials or sanctioned by regulatory authorities.
"It's difficult for patients who develop new health technology to demonstrate the advantage in a way that physicians would accept." said Howard DeMonaco, visiting scientist at MIT's Sloan School of Management. "New approaches to the treatment of diseases are by definition suspect to clinicians. Most are risk averse unless there is a substantial advantage to the new approach and the risks in doing so appear to be minimized."
Nevertheless, the DIY biohealth movement is booming. About a million people reported that they created medical innovations to address their own medical needs in surveys conducted from 2010-2015 in the U.S., U.K., Finland, Canada and South Korea.
Add in other DIY health innovations created in homes, community biolabs and "Maker" health fairs, and it's clear that health care providers are increasingly confronted with medical devices, information technology, and even medications that were developed in unconventional settings and lack the blessing of regulatory authorities.
Researchers in Portugal have tried to spread the word about many of these solutions on the Patent Innovations website, which has more than 500 examples, ranging from a 3-D printed arm and hand to a sensor device that warns someone when an osteomy bag is full.
When Reddit asked medical professionals, "What is the craziest DIY health treatment you've seen a patient attempt?" thousands shared horror stories.
But even in this era of patient empowerment, more widespread use of DIY health solutions still depends upon the approval and cooperation of physicians, nurses and other caregivers. And health care providers still lack awareness of promising patient-developed innovations, according to Dr. Joyce Lee, a pediatric endocrinologist at the University of Michigan who advocates involving patients in the design of healthcare technology. "Most physicians are scared of what they don't know," she said.
They're also understandably worried about patients who don't know what they're doing and make irresponsible decisions. When Reddit asked medical professionals, "What is the craziest DIY health treatment you've seen a patient attempt?" thousands shared horror stories, including a man who poked a hole in his belly button with a knitting needle to relieve gas.
Yet DeMonaco and Lee think it's possible to start bridging the gaps between responsible patient innovators and skeptical doctors as well as unprepared regulatory systems.
One obstacle to consumer-driven health innovations is that clinical trials to prove their safety and effectiveness are expensive and time-consuming, as De Monaco points out in a recent article. He and his colleagues suggested that low-cost clinical trials by and for patients could help address this challenge. They urged patients to publish their own research and detail the impact of innovations on their own health, and create databases that incorporate the findings of other patients.
For example, Adam Brown, who has Type 1 diabetes, compared the effects of low and high carbohydrate diets on his blood sugar management, and conveyed the results in an online journal. "Sharing the information allowed others to copy the experiment," the article noted, suggesting that this could be a model to create multi-patient trials that could be "analyzed by expert patients and/or by professionals."
Asked how to convince health care providers to consider such research, DeMonaco cited the example of doctors prescribing "off label" drugs for purposes that aren't approved by the FDA. "The secret to off label use, like any other user innovation, is dissemination," he said. Sharing case reports and other low-cost research serves to disseminate the information "in a way that is comfortable for physicians," he said, and urged patient innovators to take the same approach.
The FDA regulates commercial products and has no authority if consumers want to use medical devices, medications, or information systems that they find on their own.
Physicians should also be encouraged to engage in patient-driven research, said Dr. Lee. She suggests forming "maker spaces in which patients and physicians are involved in designing personalized technology for chronic diseases. In my vision, patient peers would build, iterate, and learn from each other and the doctor would be part of the team, constantly assessing and evaluating the technology and facilitating the process."
Some kind of regulatory oversight of DIY health technology is also necessary, said Todd Kuiken, senior research scholar at NC State and former principal investigator at the Woodrow Wilson Center's Synthetic Biology Project.
The FDA regulates commercial products and has no authority if consumers want to use medical devices, medications, or information systems that they find on their own. But that doesn't stop regulators from worrying about patients who use them. For example, the FDA issued a warning about diabetes looping technology earlier this year after one diabetic was hospitalized with hypoglycemia.
Kuiken, for one, believes that citizen-driven innovation requires oversight "to move forward." He suggested that Internal Review Boards, with experts on medical technology, safety and ethics, could play a helpful role in validating the work of patient innovators and others engaged in DIY health research. "As people are developing health products, there would be experts available to take a look and check in," he said.
Kuiken pointed out that in native American territories, tribally based IRBs working with the national Indian Health Services help to oversee new health science research. The model could be applied more broadly.
He also offered hope to those who want to integrate the current health regulatory structure into the ecosystem of DIY health innovations. "I didn't expect people from the FDA or NIH to show up" he said about a workshop on citizen-driven biomedical research that he helped organize at the Wilson Center last year. But senior officials from both agencies attended.
He indicated they "were open to new ideas." While he wouldn't disclose contributions made by individual participants in the workshop, he said the government staffers were "very interested in figuring out how to engage with citizen health innovators, to build bridges with the DIY community."
"Why should we wait for regulatory bodies? Why wait for trials that take too long?"
Time will tell whether those bridges will be built quickly enough to increase the comfort of physicians with health innovations developed by patients and other consumers. In the meantime, DIY health innovators like patient advocate Scibilia are undeterred.
"Why should we wait for regulatory bodies?" she asked. "Why wait for trials that take too long? There are plenty of data out there indicating the [diabetes looping] technology works. So we're just going to do it. We're not waiting."
A “YMCA for Scientists” Lets Kids and Teens Tackle Real Problems in Real Labs
When Keith Young was a young father shepherding his three children through the Detroit public school system, he felt something was missing.
The students are working on issues ranging from robotics to 3D printing to finding a cure for a rare form of cancer.
"What I'd observed was a gap between the resources that were being offered to university-level folks and in the professional ranks compared to what had been offered to kids in K-12, and in particular, the ones that were in urban and rural communities," he recalls. "There was always a Boys and Girls Camp, always a YMCA. There was never a YMCA for scientists."
Thus, the concept of ECOTEK Lab was born. Young's vision was to narrow that gap -- by financing pop-up labs for students who want to find a scientific solution to hard-to-solve problems that can be found in their own backyards.
He began in 2005, guiding his own children through foundational experiments for eventual startup companies, focusing on climate change, DNA, making biofuels and other fields of research. In addition to the labs, Young says ECOTEK has also reached young people by way of field trips, science fairs, and in-class demonstrations at schools. Young considers himself a venture capitalist, lending resources to kid and teen scientists.
Keith Young, foreground, is the founder of ECOTEK. Behind him, from left, are his daughter, Amber, son, Keith Jr., and ECOTEK students Emmanuel Jefferson and Antoine Crews.
(Courtesy Young)
In 2008, he took a group of six students from Detroit who had been researching brownfields, or previously developed land that's now vacant, and how they affect climate change; their work culminated in a research trip to Cape Town, South Africa, and participation in a conference there.
Today, he's helping transform the lives of around 250 student scientists across the country in places like Detroit, Florida and Maryland. Those students are working on issues ranging from robotics to 3D printing to finding a cure for a rare form of cancer.
Participating students do not receive a grade -- "they have to have passion to do the work." To take part, students must complete an application process and pay a small fee to use the lab, which is based on family resources, Young says. Students usually work in groups of two to three and are matched with a STEM mentor who can help when they run into research roadblocks.
In one lab in Detroit, a trio of teens is working to develop battery technology for smart mobility along with microbial fuel cells. In another lab, students focus on plant-based drug discovery. One of their projects is using plant DNA to better understand how the breast cancer gene mutation called BRCA1 works in the human body. In the African American population, about 35 percent of women with triple-negative breast cancer test positive for this mutation, and they usually don't learn of their diagnosis until the cancer has spread.
ECOTEK students have also had a slightly larger audience – the United Nations.
A third Detroit-based lab is led by Keith Young's daughter and one of ECOTEK's original students: Founder Briana Young, 23, runs a spin-off business called SmartFarms, which works on food security and developing food safety systems for urban farming using advanced drone technology and biochemical sensory systems. According to a recent report, more than 30,000 Detroiters don't have access to a full-service grocery store, and 48 percent are considered food insecure.
"We don't tell them which subjects to do – that's why [the labs] are not working on the same thing," explains Young. "We're trying to give student scientists a place to find their way."
The gap that Young noticed for urban students exists also among rural communities, and the problems they face are different. Students in a lab in Polk County, Florida, decided to tackle citrus greening, a bacterial disease that causes citrus fruit to bear bitter-tasting and underdeveloped fruit. The culprit is the Asian psyllid, a pest common to citrus plants. The problem is so pervasive that it's caused a precipitous decline in the industry, which had been a major one in Polk. At Bok Academy in Lake Wales, also in Florida, students are using drones to get an overhead view of the patterns they can detect to better understand which trees to treat and when.
"With the majority of our area dependent on citrus and various other crops, why not get students involved in problem-solving and research that's going to truly make a difference?" says David Lockett, a STEM facilitator at Bok Academy.
To this end, the students have shared their findings with scientists at the University of Florida and a research lab in Colorado.
A young woman who started in ECOTEK as an elementary-school student will now, at age 24, return to run the research arm of the company.
ECOTEK students have also had a slightly larger audience – the United Nations. The Detroit students have traveled to New York since 2013 to share their learnings with international diplomats from countries like Belize, Cuba, and Antigua.
The students' hands-on experience in the lab often inspires them to pursue academic success across the board at school. Young says that graduating students usually receive an average of $150,000 in college scholarships and score an average of 1450 on the SATs and in the 90th percentile on ACT tests.
Young plans to continue his work to develop these scientists, and after having invested "millions" of dollars of his own money, he's now seeing the fruits of his labor come full circle. A young woman who started in ECOTEK as an elementary-school student will now, at age 24, return to run the research arm of the company.
"It was," he says proudly, "a 14-year investment payback."
A Fierce Mother vs. a Fatal Mutation
Editor's Note: In the year 2000, Amber Salzman was a 39-year-old mom from Philadelphia living a normal life: working as a pharmaceutical executive, raising an infant son, and enjoying time with her family. But when tragedy struck in the form of a ticking time bomb in her son's DNA, she sprang into action. Her staggering triumphs after years of turmoil exemplify how parents today can play a crucial role in pushing science forward. This is her family's story, as told to LeapsMag's Editor-in-Chief Kira Peikoff.
For a few years, my nephew Oliver, suffered from symptoms that first appeared as attention deficit disorder and then progressed to what seemed like Asperger's, and he continued to worsen and lose abilities he once had. After repeated misdiagnoses, he was finally diagnosed at age 8 with adrenoleukodystrophy, or ALD – a degenerative brain disease that puts kids on the path toward death. We learned it was an X-linked disease, so we had to test other family members. Because Oliver had it, that meant his mother, my sister, was carrier, which meant I had a 50-50 chance of being a carrier, and if I was, then my son had a 50-50 chance of getting the bad gene.
You know how some people win prizes all the time? I don't have that kind of luck. I had a sick feeling when we drew my son's blood. It was almost late December in the year 2000. Spencer was 1 and climbing around like a monkey, starting to talk—a very rambunctious kid. He tested positive, along with Oliver's younger brother, Elliott.
"The only treatment at the time was an allogenic stem cell transplant from cord blood or bone marrow."
You can imagine the dreadful things that go through your mind. Everything was fine then, but he had a horrific chance that in about 3 or 4 years, a bomb would go off. It was so tough thinking that we were going to lose Oliver, and then Spencer and Elliott were next in line. The only treatment at the time was an allogenic stem cell transplant from cord blood or bone marrow, which required finding a perfect match in a donor and then undergoing months of excruciating treatment. The mortality rate can be as high as 40 percent. If your kid was lucky enough to find a donor, he would then be lucky to leave the hospital 100 days after a transplant with a highly fragile immune system.
At the time, I was at GlaxoSmithKline in Research and Development, so I did have a background in working with drug development and I was fortunate to report to the chairman of R&D, Tachi Yamada.
I called Tachi and said, "I need your advice, I have three or four years to find a cure. What do I do?" He did some research and said it's a monogenic disease—meaning it's caused by only one errant gene—so my best bet was gene therapy. This is an approach to treatment that involves taking a sample of the patient's own stem cells, treating them outside the body with a viral vector as a kind of Trojan Horse to deliver the corrected gene, and then infusing the solution back into the patient, in the hopes that the good gene will proliferate throughout the body and stop the disease in its tracks.
Tachi said to call his friend Jim Wilson, who was a leader in the field at UPenn.
Since I live in Philadelphia I drove to see Jim as soon as possible. What I didn't realize was how difficult a time it was. This was shortly after Jesse Gelsinger died in a clinical trial for gene therapy run by UPenn—the first death for the field—and research had abruptly stopped. But when I met with Jim, he provided a road map for what it would take to put together a gene therapy trial for ALD.
Meanwhile, in parallel, I was dealing with my son's health.
After he was diagnosed, we arranged a brain MRI to see if he had any early lesions, because the only way you can stop the disease is if you provide a bone marrow transplant before the disease evolves. Once it is in full force, you can't reverse it, like a locomotive that's gone wild.
"He didn't recover like other kids because his brain was not a normal brain; it was an ALD brain."
We found he had a brain tumor that had nothing to do with ALD. It was slow growing, and we would have never found it otherwise until it was much bigger and caused symptoms. Long story short, he ended up getting the tumor removed, and when he was healing, he didn't recover like other kids because his brain was not a normal brain; it was an ALD brain. We knew we needed a transplant soon, and the gene therapy trial was unfortunately still years away.
At the time, he was my only child, and I was thinking of having additional kids. But I didn't want to get pregnant with another ALD kid and I wanted a kid who could provide a bone marrow transplant for my son. So while my son was still OK, I went through 5 cycles of in vitro fertilization, a process in which hormone shots stimulated my ovaries to produce multiple eggs, which were then surgically extracted and fertilized in a lab with my husband's sperm. After the embryos grew in a dish for three to five days, doctors used a technique called preimplantation genetic diagnosis, screening those embryos to determine which genes they carry, in order to try to find a match for Spencer. Any embryo that had ALD, we saved for research. Any that did not have ALD but were not a match for Spencer, we put in the freezer. We didn't end up with a single one that was a match.
So he had a transplant at Duke Children's Hospital at age 2, using cord blood donated from a public bank. He had to be in the hospital a long time, infusing meds multiple times a day to prevent the donor cells from rejecting his body. We were all excited when he made it out after 100 days, but then we quickly had to go back for an infection he caught.
We were still bent on moving forward with the gene therapy trials.
Jim Wilson at Penn explained what proof of concept we needed in animals to go forward to humans, and a neurologist in Paris, Patrick Aubourg, had already done that using a vector to treat ALD mice. But he wasn't sure which vector to use in humans.
The next step was to get Patrick and a team of gene therapy experts together to talk about what they knew, and what needed to be done to get a trial started. There was a lot of talk about viral vectors. Because viruses efficiently transport their own genomes into the cells they infect, they can be useful tools for sending good genes into faulty cells. With some sophisticated tinkering, molecular biologists can neuter normally dangerous viruses to make them into delivery trucks, nothing more. The biggest challenge we faced then was: How do we get a viral vector that would be safe in humans?
Jim introduced us to Inder Verma, chair of the scientific advisory board of Cell Genesys, a gene therapy company in California that was focused on oncology. They were the closest to making a viral vector that could go into humans, based on a disabled form of HIV. When I spoke to Inder, he said, "Let's review the data, but you will need to convince the company to give you the vector." So I called the CEO and basically asked him, "Would you be willing to use the vector in this horrific disease?" I told him that our trial would be the fastest way to test their vector in humans. He said, "If you can convince my scientists this is ready to go, we will put the vector forward." Mind you, this was a multi-million-dollar commitment, pro bono.
I kept thinking every day, the clock is ticking, we've got to move quickly. But we convinced the scientists and got the vector.
Then, before we could test it, an unrelated clinical trial in gene therapy for a severe immunodeficiency disease, led to several of the kids developing leukemia in 2003. The press did a bad number and scared everyone away from the field, and the FDA put studies on hold in the U.S. That was one of those moments where I thought it was over. But we couldn't let it stop. Nothing's an obstacle, just a little bump we have to overcome.
Patrick wanted to do the study in France with the vector. This is where patient advocacy is important in providing perspective on the risks vs. benefits of undergoing an experimental treatment. What nobody seemed to realize was that the kids in the 2003 trial would have died if they were not first given the gene therapy, and luckily their leukemia was a treatable side effect.
Patrick and I refused to give up pushing for approval of the trial in France. Meanwhile, I was still at GSK, working full time, and doing this at night, nonstop. Because my day job did require travel to Europe, I would stop by Paris and meet with him. Another sister of mine who did not have any affected children was a key help and we kept everything going. You really need to continually stay engaged and press the agenda forward, since there are so many things that pop up that can derail the program.
Finally, Patrick was able to treat four boys with the donated vector. The science paper came out in 2009. It was a big deal. That's when the venture money came in—Third Rock Ventures was the first firm to put big money behind gene therapy. They did a deal with Patrick to get access to the Intellectual Property to advance the trial, brought on scientists to continue the study, and made some improvements to the vector. That's what led to the new study reported recently in the New England Journal of Medicine. Of 17 patients, 15 of them are still fine at least two years after treatment.
You know how I said we felt thrilled that my son could leave the hospital after 100 days? When doing the gene therapy treatment, the hospital stay needed is much quicker. Shortly after one kid was treated, a physician in the hospital remarked, "He is fine, he's only here because of the trial." Since you get your own cells, there is no risk of graft vs. host disease. The treatment is pretty anticlimactic: a bag of blood, intravenously infused. You can bounce back within a few weeks.
Now, a few years out, approximately 20 percent of patients' cells have been corrected—and that's enough to hold off the disease. That's what the data is showing. I was blown away when it worked in the first two patients.
The formerly struggling field is now making a dramatic comeback.
Just last month, the first two treatments involving gene therapy were approved by the FDA to treat a devastating type of leukemia in children and an aggressive blood cancer in adults.
Now I run a company, Adverum Biotechnologies, that I wish existed back when my son was diagnosed, because I want people who are like me, coming to me, saying: "I have proof of concept in an animal, I need to get a vector suitable for human trials, do the work needed to file with the FDA, and move it into humans." Our company knows how to do that and would like to work with such patient advocates.
Often parents feel daunted to partake in similar efforts, telling me, "Well, you worked in pharma." Yes, I had advantages, but if you don't take no for an answer, people will help you. Everybody is one degree of separation from people who can help them. You don't need a science or business background. Just be motivated, ask for help, and have your heart in the right place.
Having said that, I don't want to sound judgmental of families who are completely paralyzed. When you get a diagnosis that your child is dying, it is hard to get out of bed in the morning and face life. My sister at a certain point had one child dying, one in the hospital getting a transplant, and a healthy younger child. To expect someone like that to at the same time be flying to an FDA meeting, it's hard. Yet, she made critical meetings, and she and her husband graciously made themselves available to talk to parents of recently diagnosed boys. But it is really tough and my heart goes out to anyone who has to live through such devastation.
Tragically, my nephew Oliver passed away 13 years ago at age 12. My other nephew was 8 when he had a cord blood transplant; our trial wasn't available yet. He had some bad graft vs. host disease and he is now navigating life using a wheelchair, but thank goodness, it stopped the disease. He graduated Stanford a year ago and is now a sports writer for the Houston Chronicle.
As for my son, today he is 17, a precocious teenager applying to colleges. He also volunteers for an organization called the Friendship Circle, providing friends for kids with special needs. He doesn't focus on disability and accepts people for who they are – maybe he would have been like that anyway, but it's part of who he is. He lost his cousin and knows he is alive today because Oliver's diagnosis gave us a head start on his.
My son's story is a good one in that he had a successful transplant and recovered.
Once we knew he would make it and we no longer needed our next child to be a match, we had a daughter using one of our healthy IVF embryos in storage. She is 14 now, but she jokes that she is technically 17, so she should get to drive. I tell her, they don't count the years in the freezer. You have to joke about it.
I am so lucky to have two healthy kids today based on advances in science.
And I often think of Oliver. We always try to make him proud and honor his name.
[Editor's Note: This story was originally published in November 2017. We are resurfacing archive hits while our staff is on vacation.]
Salzman and her son Spencer, 17, who is now healthy.
(Courtesy of Salzman)