The Good, the Bad, and the Ugly in Personalized Medicine
Is the value of "personalized medicine" over-promised? Why is the quality of health care declining for many people despite the pace of innovation? Do patients and doctors have conflicting priorities? What is the best path forward?
"How do we generate evidence for value, which is what everyone is asking for?"
Some of the country's leading medical experts recently debated these questions at the prestigious annual Personalized Medicine Conference, held at Harvard Medical School in Boston, and LeapsMag was there to bring you the inside scoop.
Personalized Medicine: Is It Living Up to the Hype?
The buzzworthy phrase "personalized medicine" has been touted for years as the way of the future—customizing care to patients based on their predicted responses to treatments given their individual genetic profiles or other analyses. Since the initial sequencing of the human genome around fifteen years ago, the field of genomics has exploded as the costs have dramatically come down – from $2.7 billion to $1000 or less today. Given cheap access to such crucial information, the medical field has been eager to embrace an ultramodern world in which preventing illnesses is status quo, and treatments can be tailored for maximum effectiveness. But whether that world has finally arrived remains debatable.
"I've been portrayed as an advocate for genomics, because I'm excited about it," said Robert C. Green, Director of the Genomes2People Research Program at Harvard Medical School, the Broad Institute, and Brigham and Women's Hospital. He qualified his advocacy by saying that he tries to remain 'equipoised' or balanced in his opinions about the future of personalized medicine, and expressed skepticism about some aspects of its rapid commercialization.
"I have strong feelings about some of the [precision medicine] products that are rushing out to market in both the physician-mediated space and the consumer space," Green said, and challenged the value and sustainability of these products, such as their clinical utility and ability to help produce favorable health outcomes. He asked what most patients and providers want to know, which is, "What are the medical, behavioral, and economic outcomes? How do we generate evidence for value, which is what everyone is asking for?" He later questioned whether the use of 'sexy' and expensive diagnostic technologies is necessarily better than doing things the old-fashioned way. For instance, it is much easier and cheaper to ask a patient directly about their family history of disease, instead of spending thousands of dollars to obtain the same information with pricey diagnostic tests.
"Our mantra is to try to do data-driven health...to catch disease when it occurs early."
Michael Snyder, Professor & Chair of the Department of Genetics and Director of the Center for Genomics and Personalized Medicine at Stanford University, called himself more of an 'enthusiast' about precision medicine products like wearable devices that can digitally track vital signs, including heart rate and blood oxygen levels. "I'm certainly not equipoised," he said, adding, "Our mantra is to try to do data-driven health. We are using this to try to understand health and catch disease when it occurs early."
Snyder then shared his personal account about how his own wearable device alerted him to seek treatment while he was traveling in Norway. "My blood oxygen was low and my heart rate was high, so that told me something was up," he shared. After seeing a doctor, he discovered he was suffering from Lyme disease. He then shared other similar success stories about some of the patients in his department. Using wearable health sensors, he said, could significantly reduce health care costs: "$245 billion is spent every year on diabetes, and if we reduce that by ten percent we just saved $24 billion."
From left, Robert Green, Michael Snyder, Sandro Galea, and Thomas Miller.
(Courtesy Rachele Hendricks-Sturrup)
A Core Reality: Unresolved Societal Issues
Sandro Galea, Dean and Professor at Boston University's School of Public Health, coined himself as a 'skeptic' but also an 'enormous fan' of new technologies. He said, "I want to make sure that you all [the audience] have the best possible treatment for me when I get sick," but added, "In our rush and enthusiasm to embrace personalized and precision medicine approaches, we have done that at the peril of forgetting a lot of core realities."
"There's no one to pay for health care but all of us."
Galea stressed the need to first address certain difficult societal issues because failing to do so will deter precision medicine cures in the future. "Unless we pay attention to domestic violence, housing, racism, poor access to care, and poverty… we are all going to lose," he said. Then he quoted recent statistics about the country's growing gap in both health and wealth, which could potentially erode patient and provider interest in personalized medicine.
Thomas Miller, the founder and partner of a venture capital firm dedicated to advancing precision medicine, agreed with Galea and said that "there's no one to pay for health care but all of us." He recalled witnessing 'abuse' of diagnostic technologies that he had previously invested in. "They were often used as mechanisms to provide unnecessary care rather than appropriate care," he said. "The trend over my 30-year professional career has been that of sensitivity over specificity."
In other words: doctors rely too heavily on diagnostic tools that are sensitive enough to detect signs of a disease, but not accurate enough to confirm the presence of a specific disease. "You will always find that you're sick from something," Miller said. He lamented the counter-productivity and waste brought on by such 'abuse' and added, "That's money that could be used to address some of the problems that you [Galea] just talked about."
Do Patients and Providers Have Conflicting Priorities?
Distrust in the modern health care system is not new in the United States. That fact that medical errors were the third leading cause of death in 2016 may have fueled this mistrust even more. And the level of mistrust appears correlated with race; a recent survey of 118 adults between 18 to 75 years old showed that black respondents were less likely to trust their doctors than the non-Hispanic white respondents. The black respondents were also more concerned about personal privacy and potentially harmful hospital experimentation.
"The vast majority of physicians in this country are incentivized to keep you sick."
As if this context weren't troubling enough, some of the panelists suggested that health care providers and patients have misaligned goals, which may be financially driven.
For instance, Galea stated that health care is currently 'curative' even though that money is better spent on prevention versus cures. "The vast majority of physicians in this country are incentivized to keep you sick," he declared. "They are paid by sick patient visits. Hospital CEOs are paid by the number of sick people they have in their beds." He highlighted this issue as a national priority and mentioned some case studies showing that the behaviors of hospital CEOs quickly change when payment is based on the number of patients in beds versus the number of patients being kept out of the beds. Green lauded Galea's comment as "good sense."
Green also cautioned the audience about potential financial conflicts of interest held by proponents of precision medicine technologies. "Many of the people who are promoting genomics and personalized medicine are people who have financial interests in that arena," he warned. He emphasized that those who are perhaps curbing the over-enthusiasm do not have financial interests at stake.
What is the Best Path Forward for Personalized Medicine?
As useful as personalized medicine may be for selecting the best course of treatment, there is also the flip side: It can allow doctors to predict who will not respond well—and this painful reality must be acknowledged.
Miller argued, "We have a duty to call out therapies that won't work, that will not heal, that need to be avoided, and that will ultimately lead to you saying to a patient, 'There is nothing for you that will work.'"
Although that may sound harsh, it captures the essence of this emerging paradigm, which is to maximize health by using tailored methods that are based on comparative effectiveness, evidence of outcomes, and patient preferences. After all, as Miller pointed out, it wouldn't do much good to prescribe someone a regimen with little reason to think it might help.
For the hype around personalized medicine to be fully realized, Green concluded, "We have to prove to people that [the value of it] is true."
Here's how one doctor overcame extraordinary odds to help create the birth control pill
Dr. Percy Julian had so many personal and professional obstacles throughout his life, it’s amazing he was able to accomplish anything at all. But this hidden figure not only overcame these incredible obstacles, he also laid the foundation for the creation of the birth control pill.
Julian’s first obstacle was growing up in the Jim Crow-era south in the early part of the twentieth century, where racial segregation kept many African-Americans out of schools, libraries, parks, restaurants, and more. Despite limited opportunities and education, Julian was accepted to DePauw University in Indiana, where he majored in chemistry. But in college, Julian encountered another obstacle: he wasn’t allowed to stay in DePauw’s student housing because of segregation. Julian found lodging in an off-campus boarding house that refused to serve him meals. To pay for his room, board, and food, Julian waited tables and fired furnaces while he studied chemistry full-time. Incredibly, he graduated in 1920 as valedictorian of his class.
After graduation, Julian landed a fellowship at Harvard University to study chemistry—but here, Julian ran into yet another obstacle. Harvard thought that white students would resent being taught by Julian, an African-American man, so they withdrew his teaching assistantship. Julian instead decided to complete his PhD at the University of Vienna in Austria. When he did, he became one of the first African Americans to ever receive a PhD in chemistry.
Julian received offers for professorships, fellowships, and jobs throughout the 1930s, due to his impressive qualifications—but these offers were almost always revoked when schools or potential employers found out Julian was black. In one instance, Julian was offered a job at the Institute of Paper Chemistory in Appleton, Wisconsin—but Appleton, like many cities in the United States at the time, was known as a “sundown town,” which meant that black people weren’t allowed to be there after dark. As a result, Julian lost the job.
During this time, Julian became an expert at synthesis, which is the process of turning one substance into another through a series of planned chemical reactions. Julian synthesized a plant compound called physostigmine, which would later become a treatment for an eye disease called glaucoma.
In 1936, Julian was finally able to land—and keep—a job at Glidden, and there he found a way to extract soybean protein. This was used to produce a fire-retardant foam used in fire extinguishers to smother oil and gasoline fires aboard ships and aircraft carriers, and it ended up saving the lives of thousands of soldiers during World War II.
At Glidden, Julian found a way to synthesize human sex hormones such as progesterone, estrogen, and testosterone, from plants. This was a hugely profitable discovery for his company—but it also meant that clinicians now had huge quantities of these hormones, making hormone therapy cheaper and easier to come by. His work also laid the foundation for the creation of hormonal birth control: Without the ability to synthesize these hormones, hormonal birth control would not exist.
Julian left Glidden in the 1950s and formed his own company, called Julian Laboratories, outside of Chicago, where he manufactured steroids and conducted his own research. The company turned profitable within a year, but even so Julian’s obstacles weren’t over. In 1950 and 1951, Julian’s home was firebombed and attacked with dynamite, with his family inside. Julian often had to sit out on the front porch of his home with a shotgun to protect his family from violence.
But despite years of racism and violence, Julian’s story has a happy ending. Julian’s family was eventually welcomed into the neighborhood and protected from future attacks (Julian’s daughter lives there to this day). Julian then became one of the country’s first black millionaires when he sold his company in the 1960s.
When Julian passed away at the age of 76, he had more than 130 chemical patents to his name and left behind a body of work that benefits people to this day.
Therapies for Healthy Aging with Dr. Alexandra Bause
My guest today is Dr. Alexandra Bause, a biologist who has dedicated her career to advancing health, medicine and healthier human lifespans. Dr. Bause co-founded a company called Apollo Health Ventures in 2017. Currently a venture partner at Apollo, she's immersed in the discoveries underway in Apollo’s Venture Lab while the company focuses on assembling a team of investors to support progress. Dr. Bause and Apollo Health Ventures say that biotech is at “an inflection point” and is set to become a driver of important change and economic value.
Previously, Dr. Bause worked at the Boston Consulting Group in its healthcare practice specializing in biopharma strategy, among other priorities
She did her PhD studies at Harvard Medical School focusing on molecular mechanisms that contribute to cellular aging, and she’s also a trained pharmacist
In the episode, we talk about the present and future of therapeutics that could increase people’s spans of health, the benefits of certain lifestyle practice, the best use of electronic wearables for these purposes, and much more.
Dr. Bause is at the forefront of developing interventions that target the aging process with the aim of ensuring that all of us can have healthier, more productive lifespans.