The Good, the Bad, and the Ugly in Personalized Medicine
Is the value of "personalized medicine" over-promised? Why is the quality of health care declining for many people despite the pace of innovation? Do patients and doctors have conflicting priorities? What is the best path forward?
"How do we generate evidence for value, which is what everyone is asking for?"
Some of the country's leading medical experts recently debated these questions at the prestigious annual Personalized Medicine Conference, held at Harvard Medical School in Boston, and LeapsMag was there to bring you the inside scoop.
Personalized Medicine: Is It Living Up to the Hype?
The buzzworthy phrase "personalized medicine" has been touted for years as the way of the future—customizing care to patients based on their predicted responses to treatments given their individual genetic profiles or other analyses. Since the initial sequencing of the human genome around fifteen years ago, the field of genomics has exploded as the costs have dramatically come down – from $2.7 billion to $1000 or less today. Given cheap access to such crucial information, the medical field has been eager to embrace an ultramodern world in which preventing illnesses is status quo, and treatments can be tailored for maximum effectiveness. But whether that world has finally arrived remains debatable.
"I've been portrayed as an advocate for genomics, because I'm excited about it," said Robert C. Green, Director of the Genomes2People Research Program at Harvard Medical School, the Broad Institute, and Brigham and Women's Hospital. He qualified his advocacy by saying that he tries to remain 'equipoised' or balanced in his opinions about the future of personalized medicine, and expressed skepticism about some aspects of its rapid commercialization.
"I have strong feelings about some of the [precision medicine] products that are rushing out to market in both the physician-mediated space and the consumer space," Green said, and challenged the value and sustainability of these products, such as their clinical utility and ability to help produce favorable health outcomes. He asked what most patients and providers want to know, which is, "What are the medical, behavioral, and economic outcomes? How do we generate evidence for value, which is what everyone is asking for?" He later questioned whether the use of 'sexy' and expensive diagnostic technologies is necessarily better than doing things the old-fashioned way. For instance, it is much easier and cheaper to ask a patient directly about their family history of disease, instead of spending thousands of dollars to obtain the same information with pricey diagnostic tests.
"Our mantra is to try to do data-driven health...to catch disease when it occurs early."
Michael Snyder, Professor & Chair of the Department of Genetics and Director of the Center for Genomics and Personalized Medicine at Stanford University, called himself more of an 'enthusiast' about precision medicine products like wearable devices that can digitally track vital signs, including heart rate and blood oxygen levels. "I'm certainly not equipoised," he said, adding, "Our mantra is to try to do data-driven health. We are using this to try to understand health and catch disease when it occurs early."
Snyder then shared his personal account about how his own wearable device alerted him to seek treatment while he was traveling in Norway. "My blood oxygen was low and my heart rate was high, so that told me something was up," he shared. After seeing a doctor, he discovered he was suffering from Lyme disease. He then shared other similar success stories about some of the patients in his department. Using wearable health sensors, he said, could significantly reduce health care costs: "$245 billion is spent every year on diabetes, and if we reduce that by ten percent we just saved $24 billion."
From left, Robert Green, Michael Snyder, Sandro Galea, and Thomas Miller.
(Courtesy Rachele Hendricks-Sturrup)
A Core Reality: Unresolved Societal Issues
Sandro Galea, Dean and Professor at Boston University's School of Public Health, coined himself as a 'skeptic' but also an 'enormous fan' of new technologies. He said, "I want to make sure that you all [the audience] have the best possible treatment for me when I get sick," but added, "In our rush and enthusiasm to embrace personalized and precision medicine approaches, we have done that at the peril of forgetting a lot of core realities."
"There's no one to pay for health care but all of us."
Galea stressed the need to first address certain difficult societal issues because failing to do so will deter precision medicine cures in the future. "Unless we pay attention to domestic violence, housing, racism, poor access to care, and poverty… we are all going to lose," he said. Then he quoted recent statistics about the country's growing gap in both health and wealth, which could potentially erode patient and provider interest in personalized medicine.
Thomas Miller, the founder and partner of a venture capital firm dedicated to advancing precision medicine, agreed with Galea and said that "there's no one to pay for health care but all of us." He recalled witnessing 'abuse' of diagnostic technologies that he had previously invested in. "They were often used as mechanisms to provide unnecessary care rather than appropriate care," he said. "The trend over my 30-year professional career has been that of sensitivity over specificity."
In other words: doctors rely too heavily on diagnostic tools that are sensitive enough to detect signs of a disease, but not accurate enough to confirm the presence of a specific disease. "You will always find that you're sick from something," Miller said. He lamented the counter-productivity and waste brought on by such 'abuse' and added, "That's money that could be used to address some of the problems that you [Galea] just talked about."
Do Patients and Providers Have Conflicting Priorities?
Distrust in the modern health care system is not new in the United States. That fact that medical errors were the third leading cause of death in 2016 may have fueled this mistrust even more. And the level of mistrust appears correlated with race; a recent survey of 118 adults between 18 to 75 years old showed that black respondents were less likely to trust their doctors than the non-Hispanic white respondents. The black respondents were also more concerned about personal privacy and potentially harmful hospital experimentation.
"The vast majority of physicians in this country are incentivized to keep you sick."
As if this context weren't troubling enough, some of the panelists suggested that health care providers and patients have misaligned goals, which may be financially driven.
For instance, Galea stated that health care is currently 'curative' even though that money is better spent on prevention versus cures. "The vast majority of physicians in this country are incentivized to keep you sick," he declared. "They are paid by sick patient visits. Hospital CEOs are paid by the number of sick people they have in their beds." He highlighted this issue as a national priority and mentioned some case studies showing that the behaviors of hospital CEOs quickly change when payment is based on the number of patients in beds versus the number of patients being kept out of the beds. Green lauded Galea's comment as "good sense."
Green also cautioned the audience about potential financial conflicts of interest held by proponents of precision medicine technologies. "Many of the people who are promoting genomics and personalized medicine are people who have financial interests in that arena," he warned. He emphasized that those who are perhaps curbing the over-enthusiasm do not have financial interests at stake.
What is the Best Path Forward for Personalized Medicine?
As useful as personalized medicine may be for selecting the best course of treatment, there is also the flip side: It can allow doctors to predict who will not respond well—and this painful reality must be acknowledged.
Miller argued, "We have a duty to call out therapies that won't work, that will not heal, that need to be avoided, and that will ultimately lead to you saying to a patient, 'There is nothing for you that will work.'"
Although that may sound harsh, it captures the essence of this emerging paradigm, which is to maximize health by using tailored methods that are based on comparative effectiveness, evidence of outcomes, and patient preferences. After all, as Miller pointed out, it wouldn't do much good to prescribe someone a regimen with little reason to think it might help.
For the hype around personalized medicine to be fully realized, Green concluded, "We have to prove to people that [the value of it] is true."
Have You Heard of the Best Sport for Brain Health?
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the promising studies covered in this week's Friday Five:
- Reprogram cells to a younger state
- Pick up this sport for brain health
- Do all mental illnesses have the same underlying cause?
- New test could diagnose autism in newborns
- Scientists 3D print an ear and attach it to woman
Can blockchain help solve the Henrietta Lacks problem?
Science has come a long way since Henrietta Lacks, a Black woman from Baltimore, succumbed to cervical cancer at age 31 in 1951 -- only eight months after her diagnosis. Since then, research involving her cancer cells has advanced scientific understanding of the human papilloma virus, polio vaccines, medications for HIV/AIDS and in vitro fertilization.
Today, the World Health Organization reports that those cells are essential in mounting a COVID-19 response. But they were commercialized without the awareness or permission of Lacks or her family, who have filed a lawsuit against a biotech company for profiting from these “HeLa” cells.
While obtaining an individual's informed consent has become standard procedure before the use of tissues in medical research, many patients still don’t know what happens to their samples. Now, a new phone-based app is aiming to change that.
Tissue donors can track what scientists do with their samples while safeguarding privacy, through a pilot program initiated in October by researchers at the Johns Hopkins Berman Institute of Bioethics and the University of Pittsburgh’s Institute for Precision Medicine. The program uses blockchain technology to offer patients this opportunity through the University of Pittsburgh's Breast Disease Research Repository, while assuring that their identities remain anonymous to investigators.
A blockchain is a digital, tamper-proof ledger of transactions duplicated and distributed across a computer system network. Whenever a transaction occurs with a patient’s sample, multiple stakeholders can track it while the owner’s identity remains encrypted. Special certificates called “nonfungible tokens,” or NFTs, represent patients’ unique samples on a trusted and widely used blockchain that reinforces transparency.
Blockchain could be used to notify people if cancer researchers discover that they have certain risk factors.
“Healthcare is very data rich, but control of that data often does not lie with the patient,” said Julius Bogdan, vice president of analytics for North America at the Healthcare Information and Management Systems Society (HIMSS), a Chicago-based global technology nonprofit. “NFTs allow for the encapsulation of a patient’s data in a digital asset controlled by the patient.” He added that this technology enables a more secure and informed method of participating in clinical and research trials.
Without this technology, de-identification of patients’ samples during biomedical research had the unintended consequence of preventing them from discovering what researchers find -- even if that data could benefit their health. A solution was urgently needed, said Marielle Gross, assistant professor of obstetrics, gynecology and reproductive science and bioethics at the University of Pittsburgh School of Medicine.
“A researcher can learn something from your bio samples or medical records that could be life-saving information for you, and they have no way to let you or your doctor know,” said Gross, who is also an affiliate assistant professor at the Berman Institute. “There’s no good reason for that to stay the way that it is.”
For instance, blockchain could be used to notify people if cancer researchers discover that they have certain risk factors. Gross estimated that less than half of breast cancer patients are tested for mutations in BRCA1 and BRCA2 — tumor suppressor genes that are important in combating cancer. With normal function, these genes help prevent breast, ovarian and other cells from proliferating in an uncontrolled manner. If researchers find mutations, it’s relevant for a patient’s and family’s follow-up care — and that’s a prime example of how this newly designed app could play a life-saving role, she said.
Liz Burton was one of the first patients at the University of Pittsburgh to opt for the app -- called de-bi, which is short for decentralized biobank -- before undergoing a mastectomy for early-stage breast cancer in November, after it was diagnosed on a routine mammogram. She often takes part in medical research and looks forward to tracking her tissues.
“Anytime there’s a scientific experiment or study, I’m quick to participate -- to advance my own wellness as well as knowledge in general,” said Burton, 49, a life insurance service representative who lives in Carnegie, Pa. “It’s my way of contributing.”
Liz Burton was one of the first patients at the University of Pittsburgh to opt for the app before undergoing a mastectomy for early-stage breast cancer.
Liz Burton
The pilot program raises the issue of what investigators may owe study participants, especially since certain populations, such as Black and indigenous peoples, historically were not treated in an ethical manner for scientific purposes. “It’s a truly laudable effort,” Tamar Schiff, a postdoctoral fellow in medical ethics at New York University’s Grossman School of Medicine, said of the endeavor. “Research participants are beautifully altruistic.”
Lauren Sankary, a bioethicist and associate director of the neuroethics program at Cleveland Clinic, agrees that the pilot program provides increased transparency for study participants regarding how scientists use their tissues while acknowledging individuals’ contributions to research.
However, she added, “it may require researchers to develop a process for ongoing communication to be responsive to additional input from research participants.”
Peter H. Schwartz, professor of medicine and director of Indiana University’s Center for Bioethics in Indianapolis, said the program is promising, but he wonders what will happen if a patient has concerns about a particular research project involving their tissues.
“I can imagine a situation where a patient objects to their sample being used for some disease they’ve never heard about, or which carries some kind of stigma like a mental illness,” Schwartz said, noting that researchers would have to evaluate how to react. “There’s no simple answer to those questions, but the technology has to be assessed with an eye to the problems it could raise.”
To truly make a difference, blockchain must enable broad consent from patients, not just de-identification.
As a result, researchers may need to factor in how much information to share with patients and how to explain it, Schiff said. There are also concerns that in tracking their samples, patients could tell others what they learned before researchers are ready to publicly release this information. However, Bogdan, the vice president of the HIMSS nonprofit, believes only a minimal study identifier would be stored in an NFT, not patient data, research results or any type of proprietary trial information.
Some patients may be confused by blockchain and reluctant to embrace it. “The complexity of NFTs may prevent the average citizen from capitalizing on their potential or vendors willing to participate in the blockchain network,” Bogdan said. “Blockchain technology is also quite costly in terms of computational power and energy consumption, contributing to greenhouse gas emissions and climate change.”
In addition, this nascent, groundbreaking technology is immature and vulnerable to data security flaws, disputes over intellectual property rights and privacy issues, though it does offer baseline protections to maintain confidentiality. To truly make a difference, blockchain must enable broad consent from patients, not just de-identification, said Robyn Shapiro, a bioethicist and founding attorney at Health Sciences Law Group near Milwaukee.
The Henrietta Lacks story is a prime example, Shapiro noted. During her treatment for cervical cancer at Johns Hopkins, Lacks’s tissue was de-identified (albeit not entirely, because her cell line, HeLa, bore her initials). After her death, those cells were replicated and distributed for important and lucrative research and product development purposes without her knowledge or consent.
Nonetheless, Shapiro thinks that the initiative by the University of Pittsburgh and Johns Hopkins has potential to solve some ethical challenges involved in research use of biospecimens. “Compared to the system that allowed Lacks’s cells to be used without her permission, Shapiro said, “blockchain technology using nonfungible tokens that allow patients to follow their samples may enhance transparency, accountability and respect for persons who contribute their tissue and clinical data for research.”
Read more about laws that have prevented people from the rights to their own cells.