Iconic Neuroscientist Eric Kandel Shares This Advice for Combating Memory Loss
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Eric Kandel, 88, is a living legend. A specialist in the neurobiology of learning and memory, he received a Nobel Prize in 2000 for his work on the physiological basis of memory storage. Kandel is the Director of the Kavli Institute for Brain Science and Co-Director of the Mortimer B. Zuckerman Mind Brain Behavior Institute at Columbia University, where he has taught and conducted research for 44 years.
"If you walk two or three miles a day, you will release sufficient osteocalcin from your bones to combat non-Alzheimer's age-related memory loss."
And he's still going strong. Leapsmag Editor-in-Chief Kira Peikoff recently caught up with Dr. Kandel about his latest research, his advice for fellow seniors, and his opinions on some of the biggest challenges in neuroscience today.
What are working on these days?
I'm working on three problems: one is age-related memory loss, the second is post-traumatic stress disorder, and the third is the beholder's share: how a viewer responds to works of art. The beholder's share is a term that Alois Riegl created. He said there are two shares to a painting: the painter creates it, but it's not meaningful until somebody responds to it: the viewer, the beholder.
That's fascinating. As far as age-related memory loss, what are you learning in that area?
I'm learning that there are two forms of age-related memory loss. One is Alzheimer's disease, which we've known about for a long time. But the second is a more benign form which I call just age-related memory loss, which begins actually somewhat earlier and has a very different anatomical locus in the brain. It is caused by a different anatomical defect and responds to different therapeutic measures. It critically involves an area in the hippocampus called the dentate gyrus and it responds to a hormone released by bone called osteocalcin.
It therefore seems likely that one very effective way of combatting age-related memory loss is walking. If you walk two or three miles a day, you are likely to release sufficient osteocalcin from your bones to combat non-Alzheimer's age-related memory loss. In collaboration with Gerard Karsenty at Columbia, my lab at Columbia has been exploring this over the last year and a half.
Have you published anything about this yet?
We are just getting ready to do so.
"I think at the moment we should stick with trying to just reverse abnormalities."
Another question I have is about brain-computer interfaces to help cure disease or even provide cognitive enhancements. What do you think of companies like Kernel and Neuralink that are trying to push this new technology?
I think if it works it would be very nice. We have to see some direct evidence first, but it's certainly an encouraging approach. I think there are a number of directions we could take. The one I think at the moment is most profitable is to try to use the brain as it is and try to enhance it, restore it, refurbish it, make it function better from its age-related condition.
You mean, without some kind of machine interface?
Without necessarily introducing anything from the outside world. Although I have no objection whatsoever to introducing ancillary aids if they're beneficial and not harmful.
Do you have any opinion on whether neuroscience and technology should aim to provide an enhancement to the brain or just return it to baseline and cure disease?
I would be perfectly satisfied if we just cured diseases. I think at the moment we should stick with trying to just reverse abnormalities, but certainly … having the capability of becoming more intelligent, more attentive, capable of remembering things better than normal, that would be nice.
What do you think is the most important challenge facing the field of neuroscience today?
It's hard to say. I think the biology of consciousness is one fantastic problem. Trying to understand and successfully reverse some of the abnormalities of the brain, like age-related memory loss, schizophrenia, depression, manic depressive illness would be wonderful.
To be able to reverse memory loss, to allow people in their 70s, 80s, and 90s to live free and independent lives, is a major challenge for brain science.
Absolutely. Is there anything else you'd like to share with our readers about your research or the field more broadly?
I'd emphasize that brain science is a relatively young discipline but it's moving ahead in a very responsible and a very effective fashion, making progress in a number of areas, and is clearly sensitive to, and responsive to, the demands of the social situation. Right now, number one, the population is aging dramatically. In 1900, the average life expectancy was 50, and now the average life expectancy is 78 for men, and 82 for women.
So people are living longer and therefore are having age-related diseases, including memory loss. To be able to reverse it, to allow people in their 70s, 80s, and 90s to live free and independent lives, is a major challenge for brain science in both its basic and its clinically applied fashion. I think this is very important and serious effort should be put into this.
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. David Spiegel, associate chair of psychiatry and behavioral sciences at Stanford, and Dr. Filip Swirski, professor of medicine and cardiology at the Icahn School of Medicine at Mount Sinai.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. David Spiegel, associate chair of psychiatry and behavioral sciences at Stanford, and Dr. Filip Swirski, professor of medicine and cardiology at the Icahn School of Medicine at Mount Sinai.
- Breathing this way cuts down on anxiety*
- Could your fasting regimen make you sick?
- This type of job makes men more virile
- 3D printed hearts could save your life
- Yet another potential benefit of metformin
* This video with Dr. Andrew Huberman of Stanford shows exactly how to do the breathing practice.
This podcast originally aired on March 3, 2023.
Breakthrough drones deliver breast milk in rural Uruguay
Until three months ago, nurse Leopoldina Castelli used to send bottles of breast milk to nourish babies in the remote areas of Tacuarembó, in northern Uruguay, by way of ambulances or military trucks. That is, if the vehicles were available and the roads were passable, which wasn’t always the case. Now, five days per week, she stands by a runway at the hospital, located in Tacuarembó’s capital, watching a drone take off and disappear from view, carrying the milk to clinics that serve the babies’ families.
The drones can fly as far as 62 miles. Long distances and rough roads are no obstacles. The babies, whose mothers struggle to produce sufficient milk and cannot afford formula, now receive ample supplies for healthy growth. “Today we provided nourishment to a significantly larger number of children, and this is something that deeply moves me,” Castelli says.
About two decades ago, the Tacuarembó hospital established its own milk bank, supported by donations from mothers across Tacuarembó. Over the years, the bank has provided milk to infants immediately after birth. It's helped drive a “significant and sustained” decrease in infant mortality, says the hospital director, Ciro Ferreira.
But these children need breast milk throughout their first six months, if not longer, to prevent malnutrition and other illnesses that are prevalent in rural Tacuarembó. Ground transport isn't quick or reliable enough to meet this goal. It can take several hours, during which the milk may spoil due to a lack of refrigeration.
The battery-powered drones have been the difference-maker. The project to develop them, financed by the UNICEF Innovation Fund, is the first of its kind in Latin America. To Castelli, it's nothing short of a revolution. Tacuarembó Hospital, along with three rural clinics in the most impoverished part of Uruguay, are its leaders.
"This marks the first occasion when the public health system has been directly impacted [by our technology]," says Sebastián Macías, the CEO and co-founder of Cielum, an engineer at the University Republic, which collaborated on the technology with a Uruguayan company called Cielum and a Swiss company, Rigitech.
The drone can achieve a top speed of up to 68 miles per hour, is capable of flying in light rain, and can withstand winds of up to 30 miles per hour at a maximum altitude of 120 meters.
"We have succeeded in embracing the mothers from rural areas who were previously slipping through the cracks of the system," says Ferreira, the hospital director. He envisions an expansion of the service so it can improve health for children in other rural areas.
Nurses load the drone for breast milk delivery.
Sebastián Macías - Cielum
The star aircraft
The drone, which costs approximately $70,000, was specifically designed for the transportation of biological materials. Constructed from carbon fiber, it's three meters wide, two meters long and weighs 42 pounds when fully loaded. Additionally, it is equipped with a ballistic parachute to ensure a safe descent in case the technology fails in midair. Furthermore, it can achieve a top speed of 68 miles per hour, fly in light rain, and withstand winds of 30 miles per hour at a height of 120 meters.
Inside, the drones feature three refrigerated compartments that maintain a stable temperature and adhere to the United Nations’ standards for transporting perishable products. These compartments accommodate four gallons or 6.5 pounds of cargo. According to Macías, that's more than sufficient to carry a week’s worth of milk for one infant on just two flights, or 3.3 pounds of blood samples collected in a rural clinic.
“From an energy perspective, it serves as an efficient mode of transportation and helps reduce the carbon emissions associated with using an ambulance,” said Macías. Plus, the ambulance can remain available in the town.
Macías, who has led software development for the drone, and three other technicians have been trained to operate it. They ensure that the drone stays on course, monitor weather conditions and implement emergency changes when needed. The software displays the in-flight positions of the drones in relation to other aircraft. All agricultural planes in the region receive notification about the drone's flight path, departure and arrival times, and current location.
The future: doubling the drone's reach
Forty-five days after its inaugural flight, the drone is now making five flights per week. It serves two routes: 34 miles to Curtina and 31 miles to Tambores. The drone reaches Curtina in 50 minutes while ambulances take double that time, partly due to the subpar road conditions. Pueblo Ansina, located 40 miles from the state capital, will soon be introduced as the third destination.
Overall, the drone’s schedule is expected to become much busier, with plans to accomplish 20 weekly flights by the end of October and over 30 in 2024. Given the drone’s speed, Macías is contemplating using it to transport cancer medications as well.
“When it comes to using drones to save lives, for us, the sky is not the limit," says Ciro Ferreira, Tacuarembó hospital director.
In future trips to clinics in San Gregorio de Polanco and Caraguatá, the drone will be pushed to the limit. At these locations, a battery change will be necessary, but it's worth it. The route will cover up to 10 rural Tacuarembó clinics plus one hospital outside Tacuarembó, in Rivera, close to the border with Brazil. Currently, because of a shortage of ambulances, the delivery of pasteurized breast milk to Rivera only occurs every 15 days.
“The expansion to Rivera will include 100,000 more inhabitants, doubling the healthcare reach,” said Ferreira, the director of the Tacuarembó Hospital. In itself, Ferreira's hospital serves the medical needs of 500,000 people as one of the largest in Uruguay's interior.
Alejandro Del Estal, an aeronautical engineer at Rigitech, traveled from Europe to Tacuarembó to oversee the construction of the vertiports – the defined areas that can support drones’ take-off and landing – and the first flights. He pointed out that once the flight network between hospitals and rural polyclinics is complete in Uruguay, it will rank among the five most extensive drone routes in the world for any activity, including healthcare and commercial uses.
Cielum is already working on the long-term sustainability of the project. The aim is to have more drones operating in other rural regions in the western and northern parts of the country. The company has received inquiries from Argentina and Colombia, but, as Macías pointed out, they are exercising caution when making commitments. Expansion will depend on the development of each country’s regulations for airspace use.
For Ferreira, the advantages in Uruguay are evident: "This approach enables us to bridge the geographical gap, enhance healthcare accessibility, and reduce the time required for diagnosing and treating rural inhabitants, all without the necessity of them traveling to the hospital,” he says. "When it comes to using drones to save lives, for us, the sky is not the limit."