My Parents Raised Me to Be a Science Denier, So I Educated Myself
The Internet has made it easier than ever to misguide people. The anti-vaxx movement, climate change denial, protests against stem cell research, and other movements like these are rooted in the spread of misinformation and a distrust of science.
"I had been taught intelligent design and young-earth creationism instead of evolution, geology, and biology."
Science illiteracy is pervasive in the communities responsible for these movements. For the mainstream, the challenge lies not in sharing the facts, but in combating the spread of misinformation and facilitating an open dialogue between experts and nonexperts.
I grew up in a household that was deeply skeptical of science and medicine. My parents are evangelical Christians who believe the word of the Bible is law. To protect my four siblings and me from secular influence, they homeschooled some of us and put the others in private Christian schools. When my oldest brother left for a Christian college and the tuition began to add up, I was placed in a public charter school to offset the costs.
There, I became acutely aware of my ignorant upbringing. I had been taught intelligent design and young-earth creationism instead of evolution, geology, and biology. My mother skipped over world religions, and much of my history curriculum was more biblical-based than factual. She warned me that stem cell research, vaccines, genetic modification of crops, and other areas of research in biological science were examples of humans trying to be like God. At the time, biologist Richard Dawkins' The God Delusion was a bestseller and science seemed like an excuse to not believe in God, so she and my father discouraged me from studying it.
The gaps in my knowledge left me feeling frustrated and embarrassed. The solution was to learn about the things that had been censored from my education, but several obstacles stood in the way.
"When I first learned about fundamentalism, my parents' behavior finally made sense."
I lacked a good foundation in basic mathematics after being taught by my mother, who never graduated college. My father, who holds a graduate degree in computer science, repeatedly told me that I inherited my mother's "bad math genes" and was therefore ill-equipped for science. While my brothers excelled at math under his supervision and were even encouraged toward careers in engineering and psychology, I was expected to do well in other subjects, such as literature. When I tried to change this by enrolling in honors math and science classes, they scolded me -- so reluctantly, I dropped math. By the time I graduated high school, I was convinced that math and science were beyond me.
When I look back at my high school transcripts, that sense of failure was unfounded: my grades were mostly A's and B's, and I excelled in honors biology. Even my elementary standardized test scores don't reflect a student disinclined toward STEM, because I consistently scored in the top percentile for sciences. Teachers often encouraged me to consider studying science in college. Why then, I wondered, did my parents reject that idea? Why did they work so hard to sway me from that path? It wasn't until I moved away from my parents' home and started working to put myself through community college that I discovered my passion for both biology and science writing.
As a young adult venturing into the field of science communication, I've become fascinated with understanding communities that foster antagonistic views toward science. When I first learned about fundamentalism, my parents' behavior finally made sense. It is the foundation of the Religious Right, a right-wing Christian group which heavily influences the Republican party in the United States. The Religious Right crusades against secular education, stem cell research, abortion, evolution, and other controversial issues in science and medicine on the basis that they contradict Christian beliefs. They are quietly overturning the separation of church and state in order to enforce their religion as policy -- at the expense of science and progress.
Growing up in this community, I learned that strong feelings about these issues arise from both a lack of science literacy and a distrust of experts. Those who are against genetic modification of crops don't understand that GMO research aims to produce more, and longer-lasting, food for a growing planet. The anti-vaxx movement is still relying on a deeply flawed study that was ultimately retracted. Those who are against stem cell research don't understand how it works or the important benefits it provides the field of medicine, such as discovering new treatment methods.
In fact, at one point the famous Christian radio show Focus on the Family spread anti-vaxx mentality when they discussed vaccines that, long ago, were derived from aborted fetal cells. Although Focus on the Family now endorses vaccines, at the time it was enough to convince my own mother, who listened to the show every morning, not to vaccinate us unless the law required it.
"In everyday interactions with skeptics, science communicators need to shift their focus from convincing to discussing."
We can help clear up misunderstandings by sharing the facts, but the real challenge lies in willful ignorance. It was hard for me to accept, but I've come to understand that I'm not going to change anyone's mind. It's up to an individual to evaluate the facts, consider the arguments for and against, and make his or her own decision.
As my parents grew older and my siblings and I introduced them to basic concepts in science, they came around to trusting the experts a little more. They now see real doctors instead of homeopathic practitioners. They acknowledge our world's changing climate instead of denying it. And they even applaud two of their children for pursuing careers in science. Although they have held on to their fundamentalism and we still disagree on many issues, these basic changes give me hope that people in deeply skeptical communities are not entirely out of reach.
In everyday interactions with skeptics, science communicators need to shift their focus from convincing to discussing. This means creating an open dialogue with the intention of being understanding and helpful, not persuasive. This approach can be beneficial in both personal and online interactions. There are people within these movements who have doubts, and their doubts will grow as we continue to feed them through discussion.
People will only change their minds when it is the right time for them to do so. We need to be there ready to hold their hand and lead them toward truth when they reach out. Until then, all we can do is keep the channels of communication open, keep sharing the facts, and fight the spread of misinformation. Science is the pursuit of truth, and as scientists and science communicators, sometimes we need to let the truth speak for itself. We're just there to hold the megaphone.
Here's how one doctor overcame extraordinary odds to help create the birth control pill
Dr. Percy Julian had so many personal and professional obstacles throughout his life, it’s amazing he was able to accomplish anything at all. But this hidden figure not only overcame these incredible obstacles, he also laid the foundation for the creation of the birth control pill.
Julian’s first obstacle was growing up in the Jim Crow-era south in the early part of the twentieth century, where racial segregation kept many African-Americans out of schools, libraries, parks, restaurants, and more. Despite limited opportunities and education, Julian was accepted to DePauw University in Indiana, where he majored in chemistry. But in college, Julian encountered another obstacle: he wasn’t allowed to stay in DePauw’s student housing because of segregation. Julian found lodging in an off-campus boarding house that refused to serve him meals. To pay for his room, board, and food, Julian waited tables and fired furnaces while he studied chemistry full-time. Incredibly, he graduated in 1920 as valedictorian of his class.
After graduation, Julian landed a fellowship at Harvard University to study chemistry—but here, Julian ran into yet another obstacle. Harvard thought that white students would resent being taught by Julian, an African-American man, so they withdrew his teaching assistantship. Julian instead decided to complete his PhD at the University of Vienna in Austria. When he did, he became one of the first African Americans to ever receive a PhD in chemistry.
Julian received offers for professorships, fellowships, and jobs throughout the 1930s, due to his impressive qualifications—but these offers were almost always revoked when schools or potential employers found out Julian was black. In one instance, Julian was offered a job at the Institute of Paper Chemistory in Appleton, Wisconsin—but Appleton, like many cities in the United States at the time, was known as a “sundown town,” which meant that black people weren’t allowed to be there after dark. As a result, Julian lost the job.
During this time, Julian became an expert at synthesis, which is the process of turning one substance into another through a series of planned chemical reactions. Julian synthesized a plant compound called physostigmine, which would later become a treatment for an eye disease called glaucoma.
In 1936, Julian was finally able to land—and keep—a job at Glidden, and there he found a way to extract soybean protein. This was used to produce a fire-retardant foam used in fire extinguishers to smother oil and gasoline fires aboard ships and aircraft carriers, and it ended up saving the lives of thousands of soldiers during World War II.
At Glidden, Julian found a way to synthesize human sex hormones such as progesterone, estrogen, and testosterone, from plants. This was a hugely profitable discovery for his company—but it also meant that clinicians now had huge quantities of these hormones, making hormone therapy cheaper and easier to come by. His work also laid the foundation for the creation of hormonal birth control: Without the ability to synthesize these hormones, hormonal birth control would not exist.
Julian left Glidden in the 1950s and formed his own company, called Julian Laboratories, outside of Chicago, where he manufactured steroids and conducted his own research. The company turned profitable within a year, but even so Julian’s obstacles weren’t over. In 1950 and 1951, Julian’s home was firebombed and attacked with dynamite, with his family inside. Julian often had to sit out on the front porch of his home with a shotgun to protect his family from violence.
But despite years of racism and violence, Julian’s story has a happy ending. Julian’s family was eventually welcomed into the neighborhood and protected from future attacks (Julian’s daughter lives there to this day). Julian then became one of the country’s first black millionaires when he sold his company in the 1960s.
When Julian passed away at the age of 76, he had more than 130 chemical patents to his name and left behind a body of work that benefits people to this day.
Therapies for Healthy Aging with Dr. Alexandra Bause
My guest today is Dr. Alexandra Bause, a biologist who has dedicated her career to advancing health, medicine and healthier human lifespans. Dr. Bause co-founded a company called Apollo Health Ventures in 2017. Currently a venture partner at Apollo, she's immersed in the discoveries underway in Apollo’s Venture Lab while the company focuses on assembling a team of investors to support progress. Dr. Bause and Apollo Health Ventures say that biotech is at “an inflection point” and is set to become a driver of important change and economic value.
Previously, Dr. Bause worked at the Boston Consulting Group in its healthcare practice specializing in biopharma strategy, among other priorities
She did her PhD studies at Harvard Medical School focusing on molecular mechanisms that contribute to cellular aging, and she’s also a trained pharmacist
In the episode, we talk about the present and future of therapeutics that could increase people’s spans of health, the benefits of certain lifestyle practice, the best use of electronic wearables for these purposes, and much more.
Dr. Bause is at the forefront of developing interventions that target the aging process with the aim of ensuring that all of us can have healthier, more productive lifespans.