Novel Technologies Could Make Coronavirus Vaccines More Stable for Worldwide Shipping
Ssendi Bosco has long known to fear the rainy season. As deputy health officer of Mubende District, a region in Central Uganda, she is only too aware of the threat that heavy storms can pose to her area's fragile healthcare facilities.
In early October, persistent rain overwhelmed the power generator that supplies electricity to most of the region, causing a blackout for three weeks. The result was that most of Mubende's vaccine supplies against diseases such as tuberculosis, diphtheria, and polio went to waste. "The vaccines need to be constantly refrigerated, so the generator failing means that most of them are now unusable," she says.
This week, the global fight against the coronavirus pandemic received a major boost when Pfizer and their German partner BioNTech released interim results showing that their vaccine has proved more than 90 percent effective at preventing participants in their clinical trial from getting COVID-19.
But while Pfizer has already signed deals to supply the vaccine to the U.S., U.K., Canada, Japan and the European Union, Mubende's recent plight provides an indication of the challenges that distributors will face when attempting to ship a coronavirus vaccine around the globe, particularly to low-income nations.
Experts have estimated that somewhere between 12 billion and 15 billion doses will be needed to immunize the world's population against COVID-19, a staggering scale, and one that has never been attempted before. "The logistics of distributing COVID-19 vaccines have been described as one of the biggest challenges in the history of mankind," says Göran Conradson, managing director of Swedish vaccine manufacturer Ziccum.
But even these estimates do not take into account the potential for vaccine spoilage. Every year, the World Health Organization estimates that over half of the world's vaccines end up being wasted. This happens because vaccines are fragile products. From the moment they are made, to the moment they are administered, they have to be kept within a tightly controlled temperature range. Throughout the entire supply chain – transportation to an airport, the flight to another country, unloaded, distribution via trucks to healthcare facilities, and storage – they must be refrigerated at all times. This is known as the cold chain, and one tiny slip along the way means the vaccines are ruined.
"It's a chain, and any chain is only as strong as its weakest link," says Asel Sartbaeva, a chemist working on vaccine technologies at the University of Bath in the U.K.
For COVID-19, the challenge is even greater because some of the leading vaccine candidates need to be kept at ultracold temperatures. Pfizer's vaccine, for example, must be kept at -70 degrees Celsius, the kind of freezer capabilities rarely found outsides of specialized laboratories. Transporting such a vaccine across North America and Europe will be difficult enough, but supplying it to some of the world's poorest nations in Asia, Africa and South America -- where only 10 percent of healthcare facilities have reliable electricity -- might appear virtually impossible.
But technology may be able to come to the rescue.
Making Vaccines Less Fragile
Just as the world's pharmaceutical companies have been racing against the clock to develop viable COVID-19 vaccine candidates, scientists around the globe have been hastily developing new technologies to try and make vaccines less fragile. Some approaches involve various chemicals that can be added to the vaccine to make them far more resilient to temperature fluctuations during transit, while others focus on insulated storage units that can maintain the vaccine at a certain temperature even if there is a power outage.
Some of these concepts have already been considered for several years, but before COVID-19 there was less of a commercial incentive to bring them to market. "We never felt that there is a need for an investment in this area," explains Sam Kosari, a pharmacist at the University of Canberra, who researches the vaccine cold chain. "Some technologies were developed then to assist with vaccine transport in Africa during Ebola, but since that outbreak was contained, there hasn't been any serious initiative or reward to develop this technology further."
In her laboratory at the University of Bath, Sartbaeva is using silica - the main constituent of sand – to encase the molecular components within a vaccine. Conventional vaccines typically contain protein targets from the virus, which the immune system learns to recognize. However, when they are exposed to temperature changes, these protein structures degrade, and lose their shape, making the vaccine useless. Sartbaeva compares this to how an egg changes its shape and consistency when it is boiled.
When silica is added to a vaccine, it molds to each protein, forming little protective cages around them, and thus preventing them from being affected by temperature changes. "The whole idea is that if we can create a shell around each protein, we can protect it from physically unravelling which is what causes the deactivation of the vaccine," she says.
Other scientists are exploring similar methods of making vaccines more resilient. Researchers at the Jenner Institute at the University of Oxford recently conducted a clinical trial in which they added carbohydrates to a dengue vaccine, to assess whether it became easier to transport.
Both research groups are now hoping to collaborate with the COVID-19 vaccine candidates being developed by AstraZeneca and Imperial College, assuming they become available in 2021.
"It's good we're all working on this big problem, as different methods could work better for different types of COVID-19 vaccines," says Sartbaeva. "I think it will be needed."
Next-Generation Vaccine Technology
While these different technologies could be utilized to try and protect the first wave of COVID-19 vaccines, efforts are also underway to develop completely new methods of vaccination. Much of this research is still in its earliest stages, but it could yield a second generation of COVID-19 vaccine candidates in 2022 and beyond.
"After the first round of mass vaccination, we could well observe regional outbreaks of the disease appearing from time to time in the coming years," says Kosari. "This is the time where new types of vaccines could be helpful."
One novel method being explored by Ziccum and others is dry powder vaccines. The idea is to spray dry the final vaccine into a powder form, where it is more easily preserved and does not require any special cooling while being transported or stored. People then receive the vaccine by inhaling it, rather than having it injected into their bloodstream.
Conradson explains that the concept of dry powder vaccines works on the same principle as dried food products. Because there is no water involved, the vaccine's components are far less affected by temperature changes. "It is actually the water that leads to the destruction of potency of a vaccine when it gets heated," he says. "We're looking to develop a dry powder vaccine for COVID-19 but this will be a second-generation vaccine. At the moment there are more than 200 first-generation candidates, all of which are using conventional technologies due to the timeframe pressures, which I think was the correct decision."
Dry powder COVID-19 vaccines could also be combined with microneedle patches, to allow people to self-administer the vaccine themselves in their own home. Microneedles are miniature needles – measured in millionths of a meter – which are designed to deliver medicines through the skin with minimal pain. So far, they have been used mainly in cosmetic products, but many scientists are working to use them to deliver drugs or vaccines.
At Georgia Institute of Technology in Atlanta, Mark Prausnitz is leading a couple of projects looking at incorporating COVID-19 vaccines into microneedle patches with the hope of running some early-stage clinical trials over the next couple of years. "The advantage is that they maintain the vaccine in a stable, dry state until it dissolves in the skin," he explains.
Prausnitz and others believe that once the first generation of COVID-19 vaccines become available, biotech and pharmaceutical companies will show more interest in adapting their products so they can be used in a dried form or with a microneedle patch. "There is so much pressure to get the COVID vaccine out that right now, vaccine developers are not interested in incorporating a novel delivery method," he says. "That will have to come later, once the pressure is lessened."
The Struggle of Low-Income Nations
For low-income nations, time will only tell whether technological advancements can enable them to access the first wave of licensed COVID-19 vaccines. But reports already suggest that they are in danger of becoming an afterthought in the race to procure vaccine supplies.
While initiatives such as COVAX are attempting to make sure that vaccine access is equitable, high and middle-income countries have already inked deals to secure 3.8 billion doses, with options for another 5 billion. One particularly sobering study by the Duke Global Health Innovation Center has suggested that such hoarding means many low-income nations may not receive a vaccine until 2024.
For Bosco and the residents of Mubende District in Uganda, all they can do is wait. In the meantime, there is a more pressing problem: fixing their generators. "We hope that we can receive a vaccine," she says. "But the biggest problem will be finding ways to safely store it. Right now we cannot keep any medicines or vaccines in the conditions they need, because we don't have the funds to repair our power generators."
The Friday Five: How to exercise for cancer prevention
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the promising studies covered in this week's Friday Five:
- How to exercise for cancer prevention
- A device that brings relief to back pain
- Ingredients for reducing Alzheimer's risk
- Is the world's oldest disease the fountain of youth?
- Scared of crossing bridges? Your phone can help
New approach to brain health is sparking memories
What if a few painless electrical zaps to your brain could help you recall names, perform better on Wordle or even ward off dementia?
This is where neuroscientists are going in efforts to stave off age-related memory loss as well as Alzheimer’s disease. Medications have shown limited effectiveness in reversing or managing loss of brain function so far. But new studies suggest that firing up an aging neural network with electrical or magnetic current might keep brains spry as we age.
Welcome to non-invasive brain stimulation (NIBS). No surgery or anesthesia is required. One day, a jolt in the morning with your own battery-operated kit could replace your wake-up coffee.
Scientists believe brain circuits tend to uncouple as we age. Since brain neurons communicate by exchanging electrical impulses with each other, the breakdown of these links and associations could be what causes the “senior moment”—when you can’t remember the name of the movie you just watched.
In 2019, Boston University researchers led by Robert Reinhart, director of the Cognitive and Clinical Neuroscience Laboratory, showed that memory loss in healthy older adults is likely caused by these disconnected brain networks. When Reinhart and his team stimulated two key areas of the brain with mild electrical current, they were able to bring the brains of older adult subjects back into sync — enough so that their ability to remember small differences between two images matched that of much younger subjects for at least 50 minutes after the testing stopped.
Reinhart wowed the neuroscience community once again this fall. His newer study in Nature Neuroscience presented 150 healthy participants, ages 65 to 88, who were able to recall more words on a given list after 20 minutes of low-intensity electrical stimulation sessions over four consecutive days. This amounted to a 50 to 65 percent boost in their recall.
Even Reinhart was surprised to discover the enhanced performance of his subjects lasted a full month when they were tested again later. Those who benefited most were the participants who were the most forgetful at the start.
An older person participates in Robert Reinhart's research on brain stimulation.
Robert Reinhart
Reinhart’s subjects only suffered normal age-related memory deficits, but NIBS has great potential to help people with cognitive impairment and dementia, too, says Krista Lanctôt, the Bernick Chair of Geriatric Psychopharmacology at Sunnybrook Health Sciences Center in Toronto. Plus, “it is remarkably safe,” she says.
Lanctôt was the senior author on a meta-analysis of brain stimulation studies published last year on people with mild cognitive impairment or later stages of Alzheimer’s disease. The review concluded that magnetic stimulation to the brain significantly improved the research participants’ neuropsychiatric symptoms, such as apathy and depression. The stimulation also enhanced global cognition, which includes memory, attention, executive function and more.
This is the frontier of neuroscience.
The two main forms of NIBS – and many questions surrounding them
There are two types of NIBS. They differ based on whether electrical or magnetic stimulation is used to create the electric field, the type of device that delivers the electrical current and the strength of the current.
Transcranial Current Brain Stimulation (tES) is an umbrella term for a group of techniques using low-wattage electrical currents to manipulate activity in the brain. The current is delivered to the scalp or forehead via electrodes attached to a nylon elastic cap or rubber headband.
Variations include how the current is delivered—in an alternating pattern or in a constant, direct mode, for instance. Tweaking frequency, potency or target brain area can produce different effects as well. Reinhart’s 2022 study demonstrated that low or high frequencies and alternating currents were uniquely tied to either short-term or long-term memory improvements.
Sessions may be 20 minutes per day over the course of several days or two weeks. “[The subject] may feel a tingling, warming, poking or itching sensation,” says Reinhart, which typically goes away within a minute.
The other main approach to NIBS is Transcranial Magnetic Simulation (TMS). It involves the use of an electromagnetic coil that is held or placed against the forehead or scalp to activate nerve cells in the brain through short pulses. The stimulation is stronger than tES but similar to a magnetic resonance imaging (MRI) scan.
The subject may feel a slight knocking or tapping on the head during a 20-to-60-minute session. Scalp discomfort and headaches are reported by some; in very rare cases, a seizure can occur.
No head-to-head trials have been conducted yet to evaluate the differences and effectiveness between electrical and magnetic current stimulation, notes Lanctôt, who is also a professor of psychiatry and pharmacology at the University of Toronto. Although TMS was approved by the FDA in 2008 to treat major depression, both techniques are considered experimental for the purpose of cognitive enhancement.
“One attractive feature of tES is that it’s inexpensive—one-fifth the price of magnetic stimulation,” Reinhart notes.
Don’t confuse either of these procedures with the horrors of electroconvulsive therapy (ECT) in the 1950s and ‘60s. ECT is a more powerful, riskier procedure used only as a last resort in treating severe mental illness today.
Clinical studies on NIBS remain scarce. Standardized parameters and measures for testing have not been developed. The high heterogeneity among the many existing small NIBS studies makes it difficult to draw general conclusions. Few of the studies have been replicated and inconsistencies abound.
Scientists are still lacking so much fundamental knowledge about the brain and how it works, says Reinhart. “We don’t know how information is represented in the brain or how it’s carried forward in time. It’s more complex than physics.”
Lanctôt’s meta-analysis showed improvements in global cognition from delivering the magnetic form of the stimulation to people with Alzheimer’s, and this finding was replicated inan analysis in the Journal of Prevention of Alzheimer’s Disease this fall. Neither meta-analysis found clear evidence that applying the electrical currents, was helpful for Alzheimer’s subjects, but Lanctôt suggests this might be merely because the sample size for tES was smaller compared to the groups that received TMS.
At the same time, London neuroscientist Marco Sandrini, senior lecturer in psychology at the University of Roehampton, critically reviewed a series of studies on the effects of tES on episodic memory. Often declining with age, episodic memory relates to recalling a person’s own experiences from the past. Sandrini’s review concluded that delivering tES to the prefrontal or temporoparietal cortices of the brain might enhance episodic memory in older adults with Alzheimer’s disease and amnesiac mild cognitive impairment (the predementia phase of Alzheimer’s when people start to have symptoms).
Researchers readily tick off studies needed to explore, clarify and validate existing NIBS data. What is the optimal stimulus session frequency, spacing and duration? How intense should the stimulus be and where should it be targeted for what effect? How might genetics or degree of brain impairment affect responsiveness? Would adjunct medication or cognitive training boost positive results? Could administering the stimulus while someone sleeps expedite memory consolidation?
Using MRI or another brain scan along with computational modeling of the current flow, a clinician could create a treatment that is customized to each person’s brain.
While Sandrini’s review reported improvements induced by tES in the recall or recognition of words and images, there is no evidence it will translate into improvements in daily activities. This is another question that will require more research and testing, Sandrini notes.
Scientists are still lacking so much fundamental knowledge about the brain and how it works, says Reinhart. “We don’t know how information is represented in the brain or how it’s carried forward in time. It’s more complex than physics.”
Where the science is headed
Learning how to apply precision medicine to NIBS is the next focus in advancing this technology, says Shankar Tumati, a post-doctoral fellow working with Lanctôt.
There is great variability in each person’s brain anatomy—the thickness of the skull, the brain’s unique folds, the amount of cerebrospinal fluid. All of these structural differences impact how electrical or magnetic stimulation is distributed in the brain and ultimately the effects.
Using MRI or another brain scan along with computational modeling of the current flow, a clinician could create a treatment that is customized to each person’s brain, from where to put the electrodes to determining the exact dose and duration of stimulation needed to achieve lasting results, Sandrini says.
Above all, most neuroscientists say that largescale research studies over long periods of time are necessary to confirm the safety and durability of this therapy for the purpose of boosting memory. Short of that, there can be no FDA approval or medical regulation for this clinical use.
Lanctôt urges people to seek out clinical NIBS trials in their area if they want to see the science advance. “That is how we’ll find the answers,” she says, predicting it will be 5 to 10 years to develop each additional clinical application of NIBS. Ultimately, she predicts that reigning in Alzheimer’s disease and mild cognitive impairment will require a multi-pronged approach that includes lifestyle and medications, too.
Sandrini believes that scientific efforts should focus on preventing or delaying Alzheimer’s. “We need to start intervention earlier—as soon as people start to complain about forgetting things,” he says. “Changes in the brain start 10 years before [there is a problem]. Once Alzheimer’s develops, it is too late.”