Sloppy Science Happens More Than You Think
The media loves to tout scientific breakthroughs, and few are as toutable – and in turn, have been as touted – as CRISPR. This method of targeted DNA excision was discovered in bacteria, which use it as an adaptive immune system to combat reinfection with a previously encountered virus.
Shouldn't the editors at a Nature journal know better than to have published an incorrect paper in the first place?
It is cool on so many levels: not only is the basic function fascinating, reminding us that we still have more to discover about even simple organisms that we thought we knew so well, but the ability it grants us to remove and replace any DNA of interest has almost limitless applications in both the lab and the clinic. As if that didn't make it sexy enough, add in a bicoastal, male-female, very public and relatively ugly patent battle, and the CRISPR story is irresistible.
And then last summer, a bombshell dropped. The prestigious journal Nature Methods published a paper in which the authors claimed that CRISPR could cause many unintended mutations, rendering it unfit for clinical use. Havoc duly ensued; stocks in CRISPR-based companies plummeted. Thankfully, the authors of the offending paper were responsible, good scientists; they reassessed, then recanted. Their attention- and headline- grabbing results were wrong, and they admitted as much, leading Nature Methods to formally retract the paper this spring.
How did this happen? Shouldn't the editors at a Nature journal know better than to have published this in the first place?
Alas, high-profile scientific journals publish misleading and downright false results fairly regularly. Some errors are unavoidable – that's how the scientific method works. Hypotheses and conclusions will invariably be overturned as new data becomes available and new technologies are developed that allow for deeper and deeper studies. That's supposed to happen. But that's not what we're talking about here. Nor are we talking about obvious offenses like outright plagiarism. We're talking about mistakes that are avoidable, and that still have serious ramifications.
The cultures of both industry and academia promote research that is poorly designed and even more poorly analyzed.
Two parties are responsible for a scientific publication, and thus two parties bear the blame when things go awry: the scientists who perform and submit the work, and the journals who publish it. Unfortunately, both are incentivized for speedy and flashy publications, and not necessarily for correct publications. It is hardly a surprise, then, that we end up with papers that are speedy and flashy – and not necessarily correct.
"Scientists don't lie and submit falsified data," said Andy Koff, a professor of Molecular Biology at Sloan Kettering Institute, the basic research arm of Memorial Sloan Kettering Cancer Center. Richard Harris, who wrote the book on scientific misconduct running the gamut from unconscious bias and ignorance to more malicious fraudulence, largely concurs (full disclosure: I reviewed the book here). "Scientists want to do good science and want to be recognized as such," he said. But even so, the cultures of both industry and academia promote research that is poorly designed and even more poorly analyzed. In Rigor Mortis: How Sloppy Science Creates Worthless Cures, Crushes Hope, and Wastes Millions, Harris describes how scientists must constantly publish in order to maintain their reputations and positions, to get grants and tenure and students. "They are disincentivized from doing that last extra experiment to prove their results," he said; it could prove too risky if it could cost them a publication.
Ivan Oransky and Adam Marcus founded Retraction Watch, a blog that tracks the retraction of scientific papers, in 2010. Oransky pointed out that blinded peer review – the pride and joy of the scientific publishing enterprise – is a large part of the problem. "Pre-publication peer review is still important, but we can't treat it like the only check on the system. Papers are being reviewed by non-experts, and reviewers are asked to review papers only tangentially related to their field. Moreover, most peer reviewers don't look at the underlying or raw data, even when it is available. How then can they tell if the analysis is flawed or the data is accurate?" he wondered.
Mistaken publications also erode the public's opinion of legitimate science, which is problematic since that opinion isn't especially high to begin with.
Koff agreed that anonymous peer review is valuable, but severely flawed. "Blinded review forces a collective view of importance," he said. "If an article disagrees with the reviewer's worldview, the article gets rejected or forced to adhere to that worldview – even if that means pushing the data someplace it shouldn't necessarily go." We have lost the scientific principle behind review, he thinks, which was to critically analyze a paper. But instead of challenging fundamental assumptions within a paper, reviewers now tend to just ask for more and more supplementary data. And don't get him started on editors. "Editors are supposed to arbitrate between reviewers and writers and they have completely abdicated this responsibility, at every journal. They do not judge, and that's a real failing."
Harris laments the wasted time, effort, and resources that result when erroneous ideas take hold in a field, not to mention lives lost when drug discovery is predicated on basic science findings that end up being wrong. "When no one takes the time, care, and money to reproduce things, science isn't stopping – but it is slowing down," he noted. Mistaken publications also erode the public's opinion of legitimate science, which is problematic since that opinion isn't especially high to begin with.
Scientists and publishers don't only cause the problem, though – they may also provide the solution. Both camps are increasingly recognizing and dealing with the crisis. The self-proclaimed "data thugs" Nick Brown and James Heathers use pretty basic arithmetic to reveal statistical errors in papers. The microbiologist Elisabeth Bik scans the scientific literature for problematic images "in her free time." The psychologist Brian Nosek founded the Center for Open Science, a non-profit organization dedicated to promoting openness, integrity, and reproducibility in scientific research. The Nature family of journals – yes, the one responsible for the latest CRISPR fiasco – has its authors complete a checklist to combat irreproducibility, à la Atul Gawande. And Nature Communications, among other journals, uses transparent peer review, in which authors can opt to have the reviews of their manuscript published anonymously alongside the completed paper. This practice "shows people how the paper evolved," said Koff "and keeps the reviewer and editor accountable. Did the reviewer identify the major problems with the paper? Because there are always major problems with a paper."
If you look back on the last century of scientific achievements, you might notice that most of the scientists we celebrate are overwhelmingly white, while scientists of color take a backseat. Since the Nobel Prize was introduced in 1901, for example, no black scientists have landed this prestigious award.
The work of black women scientists has gone unrecognized in particular. Their work uncredited and often stolen, black women have nevertheless contributed to some of the most important advancements of the last 100 years, from the polio vaccine to GPS.
Here are five black women who have changed science forever.
Dr. May Edward Chinn
Dr. May Edward Chinn practicing medicine in Harlem
George B. Davis, PhD.
Chinn was born to poor parents in New York City just before the start of the 20th century. Although she showed great promise as a pianist, playing with the legendary musician Paul Robeson throughout the 1920s, she decided to study medicine instead. Chinn, like other black doctors of the time, were barred from studying or practicing in New York hospitals. So Chinn formed a private practice and made house calls, sometimes operating in patients’ living rooms, using an ironing board as a makeshift operating table.
Chinn worked among the city’s poor, and in doing this, started to notice her patients had late-stage cancers that often had gone undetected or untreated for years. To learn more about cancer and its prevention, Chinn begged information off white doctors who were willing to share with her, and even accompanied her patients to other clinic appointments in the city, claiming to be the family physician. Chinn took this information and integrated it into her own practice, creating guidelines for early cancer detection that were revolutionary at the time—for instance, checking patient health histories, checking family histories, performing routine pap smears, and screening patients for cancer even before they showed symptoms. For years, Chinn was the only black female doctor working in Harlem, and she continued to work closely with the poor and advocate for early cancer screenings until she retired at age 81.
Alice Ball
Pictorial Press Ltd/Alamy
Alice Ball was a chemist best known for her groundbreaking work on the development of the “Ball Method,” the first successful treatment for those suffering from leprosy during the early 20th century.
In 1916, while she was an undergraduate student at the University of Hawaii, Ball studied the effects of Chaulmoogra oil in treating leprosy. This oil was a well-established therapy in Asian countries, but it had such a foul taste and led to such unpleasant side effects that many patients refused to take it.
So Ball developed a method to isolate and extract the active compounds from Chaulmoogra oil to create an injectable medicine. This marked a significant breakthrough in leprosy treatment and became the standard of care for several decades afterward.
Unfortunately, Ball died before she could publish her results, and credit for this discovery was given to another scientist. One of her colleagues, however, was able to properly credit her in a publication in 1922.
Henrietta Lacks
onathan Newton/The Washington Post/Getty
The person who arguably contributed the most to scientific research in the last century, surprisingly, wasn’t even a scientist. Henrietta Lacks was a tobacco farmer and mother of five children who lived in Maryland during the 1940s. In 1951, Lacks visited Johns Hopkins Hospital where doctors found a cancerous tumor on her cervix. Before treating the tumor, the doctor who examined Lacks clipped two small samples of tissue from Lacks’ cervix without her knowledge or consent—something unthinkable today thanks to informed consent practices, but commonplace back then.
As Lacks underwent treatment for her cancer, her tissue samples made their way to the desk of George Otto Gey, a cancer researcher at Johns Hopkins. He noticed that unlike the other cell cultures that came into his lab, Lacks’ cells grew and multiplied instead of dying out. Lacks’ cells were “immortal,” meaning that because of a genetic defect, they were able to reproduce indefinitely as long as certain conditions were kept stable inside the lab.
Gey started shipping Lacks’ cells to other researchers across the globe, and scientists were thrilled to have an unlimited amount of sturdy human cells with which to experiment. Long after Lacks died of cervical cancer in 1951, her cells continued to multiply and scientists continued to use them to develop cancer treatments, to learn more about HIV/AIDS, to pioneer fertility treatments like in vitro fertilization, and to develop the polio vaccine. To this day, Lacks’ cells have saved an estimated 10 million lives, and her family is beginning to get the compensation and recognition that Henrietta deserved.
Dr. Gladys West
Andre West
Gladys West was a mathematician who helped invent something nearly everyone uses today. West started her career in the 1950s at the Naval Surface Warfare Center Dahlgren Division in Virginia, and took data from satellites to create a mathematical model of the Earth’s shape and gravitational field. This important work would lay the groundwork for the technology that would later become the Global Positioning System, or GPS. West’s work was not widely recognized until she was honored by the US Air Force in 2018.
Dr. Kizzmekia "Kizzy" Corbett
TIME Magazine
At just 35 years old, immunologist Kizzmekia “Kizzy” Corbett has already made history. A viral immunologist by training, Corbett studied coronaviruses at the National Institutes of Health (NIH) and researched possible vaccines for coronaviruses such as SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome).
At the start of the COVID pandemic, Corbett and her team at the NIH partnered with pharmaceutical giant Moderna to develop an mRNA-based vaccine against the virus. Corbett’s previous work with mRNA and coronaviruses was vital in developing the vaccine, which became one of the first to be authorized for emergency use in the United States. The vaccine, along with others, is responsible for saving an estimated 14 million lives.On today’s episode of Making Sense of Science, I’m honored to be joined by Dr. Paul Song, a physician, oncologist, progressive activist and biotech chief medical officer. Through his company, NKGen Biotech, Dr. Song is leveraging the power of patients’ own immune systems by supercharging the body’s natural killer cells to make new treatments for Alzheimer’s and cancer.
Whereas other treatments for Alzheimer’s focus directly on reducing the build-up of proteins in the brain such as amyloid and tau in patients will mild cognitive impairment, NKGen is seeking to help patients that much of the rest of the medical community has written off as hopeless cases, those with late stage Alzheimer’s. And in small studies, NKGen has shown remarkable results, even improvement in the symptoms of people with these very progressed forms of Alzheimer’s, above and beyond slowing down the disease.
In the realm of cancer, Dr. Song is similarly setting his sights on another group of patients for whom treatment options are few and far between: people with solid tumors. Whereas some gradual progress has been made in treating blood cancers such as certain leukemias in past few decades, solid tumors have been even more of a challenge. But Dr. Song’s approach of using natural killer cells to treat solid tumors is promising. You may have heard of CAR-T, which uses genetic engineering to introduce cells into the body that have a particular function to help treat a disease. NKGen focuses on other means to enhance the 40 plus receptors of natural killer cells, making them more receptive and sensitive to picking out cancer cells.
Paul Y. Song, MD is currently CEO and Vice Chairman of NKGen Biotech. Dr. Song’s last clinical role was Asst. Professor at the Samuel Oschin Cancer Center at Cedars Sinai Medical Center.
Dr. Song served as the very first visiting fellow on healthcare policy in the California Department of Insurance in 2013. He is currently on the advisory board of the Pritzker School of Molecular Engineering at the University of Chicago and a board member of Mercy Corps, The Center for Health and Democracy, and Gideon’s Promise.
Dr. Song graduated with honors from the University of Chicago and received his MD from George Washington University. He completed his residency in radiation oncology at the University of Chicago where he served as Chief Resident and did a brachytherapy fellowship at the Institute Gustave Roussy in Villejuif, France. He was also awarded an ASTRO research fellowship in 1995 for his research in radiation inducible gene therapy.
With Dr. Song’s leadership, NKGen Biotech’s work on natural killer cells represents cutting-edge science leading to key findings and important pieces of the puzzle for treating two of humanity’s most intractable diseases.
Show links
- Paul Song LinkedIn
- NKGen Biotech on Twitter - @NKGenBiotech
- NKGen Website: https://nkgenbiotech.com/
- NKGen appoints Paul Song
- Patient Story: https://pix11.com/news/local-news/long-island/promising-new-treatment-for-advanced-alzheimers-patients/
- FDA Clearance: https://nkgenbiotech.com/nkgen-biotech-receives-ind-clearance-from-fda-for-snk02-allogeneic-natural-killer-cell-therapy-for-solid-tumors/Q3 earnings data: https://www.nasdaq.com/press-release/nkgen-biotech-inc.-reports-third-quarter-2023-financial-results-and-business