The Secrets of a Long Life from the U.S.’s Top Longevity Hot Spot
People are living longer in the world's richest countries, according to a recent Pew Report. Certain areas, in particular, have drawn the attention of researchers who study longevity because in those places, living to 100 is not unusual.
"If you want to live longer, shape your environment."
At 8000 feet up, Summit County, Colorado is a longevity hotspot. Surrounded by mountains that soar to more than 14,000 feet, the population of nearly 31,000 brags the highest expected lifespan in the United States, at 86.83 years. For comparison, the average life expectancy in the U.S. is 78.6 years.
So, what is it about living in Summit County that has brought about this high honor?
Despite popular belief, it's not about genes. Only about "20-30 percent of longevity can be predicted by genetics," longevity researcher Howard S. Friedman wrote in an email exchange. Friedman, a professor at the University of California at Riverside, co-authored a book about a famous study that followed participants for eight decades to learn what traits and factors contribute to a long life.
"About half is behavioral (including environmental)," Friedman says. "The rest is random (chance)." His longevity research is based on work that began in 1921 by Stanford University psychologist Lewis Terman. To discern the keys to longevity, Friedman and colleagues spent 20 years looking back at the lives led by the 1500 "gifted" 11-year old boys and girls who were born in 1910 and participated in Terman's study.
"We found that ambition, perseverance, and high motivation … predicted not only success but also longevity: Stressful job and hard work, long life!" Friedman says.
Longevity expert Dan Buettner agrees that an individual's environment is key. Buettner studies what he calls Blue Zones, where people "naturally live longer." But, unlike the five Blue Zones in the world -- Okinawa, Japan; Sardinia, Italy; Nicoya, Costa Rica; Ikaria, Greece; and Loma Linda, California — the majority of the Summit County population chose to move to the mountain towns that make up the region. Because Buettner believes that people can be taught to live longer, he sees Summit County as an instructive locale.
Like the Blue Zones, people in Summit County "do not pursue healthy lifestyles; [rather] it ensues," he says. "Blue Zones have the benefit of traditional patterns of eating and traditional rhythms of life. So they tend to be places where people walk to work, to a friend's house … [and] Blue Zone people eat the right food -- not because they have better individual responsibility or discipline; they simply live in an environment where beans, greens, nuts and grains are cheapest and most accessible."
"If you want to live longer," Buettner says, "shape your environment."
But an individual's environment can be affected by a number of factors, including socioeconomics, race, quality of and access to health care, as well as behavioral and metabolic risks. While the residents of Summit County smoke less and exercise more than those in regions with shorter life spans, they also have higher incomes and levels of education and lower unemployment.
"The healthiest individuals in The Longevity Project…lived meaningful, committed lives. They worked hard and played hard."
Gloria Breigenzer moved to Summit County 20 years ago with her husband. "We wanted to ski and ride horses up in the mountains," says Breigenzer. The 75-year-old still works part time as a hair dresser, goes to the gym every day, lifts weights and does yoga.
"I don't know why people don't want to get up and go out and work out and do stuff. I do," says the grandmother, who also exercises her rescue horse five days a week and for the past 15 years has done swing, country two step, and jazz dance in a group with her 77-year-old husband. She's also taking kiteboarding lessons and for the past two years has spent every afternoon studying Spanish.
Pete and Judy Rubin, both 65, retired to Summit County nearly two years ago from Cleveland. In Colorado, "socializing doesn't revolve around food," says Pete. "In Cleveland it always did…[Being outside] in summer or in winter is just easy. Skiing, on a bike, taking a hike, mowing the lawn, looking at a mountain instead of having someone else do it."
The Summit County approach resonates for researcher Friedman, who says that it's the "constellations of habits and patterns of living," that stood out most to him in his study. "Throw away your lists...The healthiest individuals in The Longevity Project…lived meaningful, committed lives. They worked hard and played hard. They were very persistent and responsible, and they were dedicated to things and people beyond themselves."
The following are some of the common denominators found in populations that live longer, including those who live in Summit County:
Plant-based diet: "Eat meat, no more than 5 times a month … [and] 95 percent of all the calories you take in should be whole plant-based foods," says Buettner.
Know your purpose: Buettner found that having and understanding your sense of purpose is worth up to seven years of extra life expectancy.
Have friendships: "You should have three to five friends who are healthy themselves who you can call on a bad day and they'll care," says Buettner.
Be on the move: Populations in zones where there is higher longevity "move naturally" as part of their day. It's not about diets. "No diet in the history of the world has worked for more than 5 percent of people after two years," says Buettner.
Relieve stress: "You should have some daily practices that help you downshift," says Buettner. It "could be taking naps, or meditation practice, or a habit of praying or a habit of doing happy hours."
Employ a family first rule: "Successful centenarians put their families first," explains Buettner. "And that means keeping your aging parents nearby, being seriously invested in your partner and if you have kids, you make them a priority."
It's these "key patterns of living [that] tend to make you both healthier and happier," says Friedman. "And health and happiness often then mutually reinforce each other."
Fast for Longevity, with Less Hunger, with Dr. Valter Longo
You’ve probably heard about intermittent fasting, where you don’t eat for about 16 hours each day and limit the window where you’re taking in food to the remaining eight hours.
But there’s another type of fasting, called a fasting-mimicking diet, with studies pointing to important benefits. For today’s podcast episode, I chatted with Dr. Valter Longo, a biogerontologist at the University of Southern California, about all kinds of fasting, and particularly the fasting-mimicking diet, which minimizes hunger as much as possible. Going without food for a period of time is an example of good stress: challenges that work at the cellular level to boost health and longevity.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
If you’ve ever spent more than a few minutes looking into fasting, you’ve almost certainly come upon Dr. Longo's name. He is the author of the bestselling book, The Longevity Diet, and the best known researcher of fasting-mimicking diets.
With intermittent fasting, your body might begin to switch up its fuel type. It's usually running on carbs you get from food, which gets turned into glucose, but without food, your liver starts making something called ketones, which are molecules that may benefit the body in a number of ways.
With the fasting-mimicking diet, you go for several days eating only types of food that, in a way, keep themselves secret from your body. So at the level of your cells, the body still thinks that it’s fasting. This is the best of both worlds – you’re not completely starving because you do take in some food, and you’re getting the boosts to health that come with letting a fast run longer than intermittent fasting. In this episode, Dr. Longo talks about the growing number of studies showing why this could be very advantageous for health, as long as you undertake the diet no more than a few times per year.
Dr. Longo is the director of the Longevity Institute at USC’s Leonard Davis School of Gerontology, and the director of the Longevity and Cancer program at the IFOM Institute of Molecular Oncology in Milan. In addition, he's the founder and president of the Create Cures Foundation in L.A., which focuses on nutrition for the prevention and treatment of major chronic illnesses. In 2016, he received the Glenn Award for Research on Aging for the discovery of genes and dietary interventions that regulate aging and prevent diseases. Dr. Longo received his PhD in biochemistry from UCLA and completed his postdoc in the neurobiology of aging and Alzheimer’s at USC.
Show links:
Create Cures Foundation, founded by Dr. Longo: www.createcures.org
Dr. Longo's Facebook: https://www.facebook.com/profvalterlongo/
Dr. Longo's Instagram: https://www.instagram.com/prof_valterlongo/
Dr. Longo's book: The Longevity Diet
The USC Longevity Institute: https://gero.usc.edu/longevity-institute/
Dr. Longo's research on nutrition, longevity and disease: https://pubmed.ncbi.nlm.nih.gov/35487190/
Dr. Longo's research on fasting mimicking diet and cancer: https://pubmed.ncbi.nlm.nih.gov/34707136/
Full list of Dr. Longo's studies: https://pubmed.ncbi.nlm.nih.gov/?term=Longo%2C+Valter%5BAuthor%5D&sort=date
Research on MCT oil and Alzheimer's: https://alz-journals.onlinelibrary.wiley.com/doi/f...
Keto Mojo device for measuring ketones
Silkworms with spider DNA spin silk stronger than Kevlar
Story by Freethink
The study and copying of nature’s models, systems, or elements to address complex human challenges is known as “biomimetics.” Five hundred years ago, an elderly Italian polymath spent months looking at the soaring flight of birds. The result was Leonardo da Vinci’s biomimetic Codex on the Flight of Birds, one of the foundational texts in the science of aerodynamics. It’s the science that elevated the Wright Brothers and has yet to peak.
Today, biomimetics is everywhere. Shark-inspired swimming trunks, gecko-inspired adhesives, and lotus-inspired water-repellents are all taken from observing the natural world. After millions of years of evolution, nature has quite a few tricks up its sleeve. They are tricks we can learn from. And now, thanks to some spider DNA and clever genetic engineering, we have another one to add to the list.
The elusive spider silk
We’ve known for a long time that spider silk is remarkable, in ways that synthetic fibers can’t emulate. Nylon is incredibly strong (it can support a lot of force), and Kevlar is incredibly tough (it can absorb a lot of force). But neither is both strong and tough. In all artificial polymeric fibers, strength and toughness are mutually exclusive, and so we pick the material best for the job and make do.
Spider silk, a natural polymeric fiber, breaks this rule. It is somehow both strong and tough. No surprise, then, that spider silk is a source of much study.The problem, though, is that spiders are incredibly hard to cultivate — let alone farm. If you put them together, they will attack and kill each other until only one or a few survive. If you put 100 spiders in an enclosed space, they will go about an aggressive, arachnocidal Hunger Games. You need to give each its own space and boundaries, and a spider hotel is hard and costly. Silkworms, on the other hand, are peaceful and productive. They’ll hang around all day to make the silk that has been used in textiles for centuries. But silkworm silk is fragile. It has very limited use.
The elusive – and lucrative – trick, then, would be to genetically engineer a silkworm to produce spider-quality silk. So far, efforts have been fruitless. That is, until now.
We can have silkworms creating silk six times as tough as Kevlar and ten times as strong as nylon.
Spider-silkworms
Junpeng Mi and his colleagues working at Donghua University, China, used CRISPR gene-editing technology to recode the silk-creating properties of a silkworm. First, they took genes from Araneus ventricosus, an East Asian orb-weaving spider known for its strong silk. Then they placed these complex genes – genes that involve more than 100 amino acids – into silkworm egg cells. (This description fails to capture how time-consuming, technical, and laborious this was; it’s a procedure that requires hundreds of thousands of microinjections.)
This had all been done before, and this had failed before. Where Mi and his team succeeded was using a concept called “localization.” Localization involves narrowing in on a very specific location in a genome. For this experiment, the team from Donghua University developed a “minimal basic structure model” of silkworm silk, which guided the genetic modifications. They wanted to make sure they had the exactly right transgenic spider silk proteins. Mi said that combining localization with this basic structure model “represents a significant departure from previous research.” And, judging only from the results, he might be right. Their “fibers exhibited impressive tensile strength (1,299 MPa) and toughness (319 MJ/m3), surpassing Kevlar’s toughness 6-fold.”
A world of super-materials
Mi’s research represents the bursting of a barrier. It opens up hugely important avenues for future biomimetic materials. As Mi puts it, “This groundbreaking achievement effectively resolves the scientific, technical, and engineering challenges that have hindered the commercialization of spider silk, positioning it as a viable alternative to commercially synthesized fibers like nylon and contributing to the advancement of ecological civilization.”
Around 60 percent of our clothing is made from synthetic fibers like nylon, polyester, and acrylic. These plastics are useful, but often bad for the environment. They shed into our waterways and sometimes damage wildlife. The production of these fibers is a source of greenhouse gas emissions. Now, we have a “sustainable, eco-friendly high-strength and ultra-tough alternative.” We can have silkworms creating silk six times as tough as Kevlar and ten times as strong as nylon.
We shouldn’t get carried away. This isn’t going to transform the textiles industry overnight. Gene-edited silkworms are still only going to produce a comparatively small amount of silk – even if farmed in the millions. But, as Mi himself concedes, this is only the beginning. If Mi’s localization and structure-model techniques are as remarkable as they seem, then this opens up the door to a great many supermaterials.
Nature continues to inspire. We had the bird, the gecko, and the shark. Now we have the spider-silkworm. What new secrets will we unravel in the future? And in what exciting ways will it change the world?