Today’s Focus on STEM Education Is Missing A Crucial Point
I once saw a fascinating TED talk on 3D printing. As I watched the presenter discuss the custom fabrication, not of plastic gears or figurines, but of living, implantable kidneys, I thought I was finally living in the world of Star Trek, and I experienced a flush of that eager, expectant enthusiasm I felt as a child looking toward the future. I looked at my current career and felt a rejuvenation of my commitment to teach young people the power of science.
The well-rounded education of human beings needs to include lessons learned both from a study of the physical world, and from a study of humanity.
Whether we are teachers or not, those of us who admire technology and innovation, and who wish to support progress, usually embrace the importance of educating the next generation of scientists and inventors. Growing a healthy technological civilization takes a lot of work, skill, and wisdom, and its continued health depends on future generations of competent thinkers. Thus, we may find it encouraging that there is currently an abundance of interest in STEM– the common acronym for the study of science, technology, engineering, and math.
But education is as challenging an endeavor as science itself. Educating youth--if we want to do it right--requires as much thought, work, and expertise as discovering a cure or pioneering regenerative medicine. Before we give our money, time, or support to any particular school or policy, let's give some thought to the details of the educational process.
A Well-Balanced Diet
For one thing, STEM education cannot stand in isolation. The well-rounded education of human beings needs to include lessons learned both from a study of the physical world, and from a study of humanity. This is especially true for the basic education of children, but it is true even for college students. And even for those in science and engineering, there are important lessons to be learned from the study of history, literature, and art.
Scientists have their own emotions and values, and also need financial support. The fruits of their labor ultimately benefit other people. How are we all to function together in our division-of-labor society, without some knowledge of the way societies work? How are we to fully thrive and enjoy life, without some understanding of ourselves, our motives, our moral values, and our relationships to others? STEM education needs the humanities as a partner. That flourishing civilization we dream of requires both technical competence and informed life-choices.
Think for Yourself (Even in Science)
Perhaps even more important than what is taught, is the subject of how things are taught. We want our children to learn the skill of thinking independently, but even in the sciences, we often fail completely to demonstrate how. Instead of teaching science as a thinking process, we indoctrinate, using the grand discoveries of the great scientists as our sacred texts. But consider the words of Isaac Newton himself, regarding rote learning:
A Vulgar Mechanick can practice what he has been taught or seen done, but if he is in an error he knows not how to find it out and correct it, and if you put him out of his road he is at a stand. Whereas he that is able to reason nimbly and judiciously about figure, force, and motion, is never at rest till he gets over every rub.
What's the point of all this formal schooling in the first place? Is it, as many of the proponents of STEM education might argue, to train students for a "good" career?
If our goal is to help students "reason nimbly" about the world around them, as the great scientists themselves did, are we succeeding? When we "teach" middle school students about DNA or cellular respiration by presenting as our only supporting evidence cartoon pictures, are we showing students a process of discovery based on evidence and hard work? Or are we just training them to memorize and repeat what the authorities say?
A useful education needs to give students the skill of following a line of reasoning, of asking rational questions, and of chewing things through in their minds--even if we regard the material as beyond question. Besides feeding students a well-balanced diet of knowledge, healthy schooling needs to teach them to digest this information thoroughly.
Thinking Training
Now step back for a moment and think about the purpose of education. What's the point of all this formal schooling in the first place? Is it, as many of the proponents of STEM education might argue, to train students for a "good" career? That view may have some validity for young adults, who are beginning to choose electives in favored subjects, and have started to choose a direction for their career.
But for the basic education of children, this way of thinking is presumptuous and disastrous. I would argue that the central purpose of a basic education is not to teach children how to perform this or that particular skill, but simply to teach them to think clearly. We should not be aiming to provide job training, but thinking training. We should be helping children learn how to "reason nimbly" about the world around them, and breathing life into their thinking processes, by which they will grapple with the events and circumstances of their lives.
So as we admire innovation, dream of a wonderful future, and attempt to nurture the next generation of scientists and engineers, instead of obsessing over STEMeducation, let us focus on rational education. Let's worry about showing children how to think--about all the important things in life. Let's give them the basic facts of human existence -- physical and humanitarian -- and show them how to fluently and logically understand them.
Some students will become the next generation of creators, and some will follow other careers, but together -- if they are educated properly -- they will continue to grow their inheritance, and to keep our civilization healthy and flourishing, in body and in mind.
If you were one of the millions who masked up, washed your hands thoroughly and socially distanced, pat yourself on the back—you may have helped change the course of human history.
Scientists say that thanks to these safety precautions, which were introduced in early 2020 as a way to stop transmission of the novel COVID-19 virus, a strain of influenza has been completely eliminated. This marks the first time in human history that a virus has been wiped out through non-pharmaceutical interventions, such as vaccines.
The flu shot, explained
Influenza viruses type A and B are responsible for the majority of human illnesses and the flu season.
Centers for Disease Control
For more than a decade, flu shots have protected against two types of the influenza virus–type A and type B. While there are four different strains of influenza in existence (A, B, C, and D), only strains A, B, and C are capable of infecting humans, and only A and B cause pandemics. In other words, if you catch the flu during flu season, you’re most likely sick with flu type A or B.
Flu vaccines contain inactivated—or dead—influenza virus. These inactivated viruses can’t cause sickness in humans, but when administered as part of a vaccine, they teach a person’s immune system to recognize and kill those viruses when they’re encountered in the wild.
Each spring, a panel of experts gives a recommendation to the US Food and Drug Administration on which strains of each flu type to include in that year’s flu vaccine, depending on what surveillance data says is circulating and what they believe is likely to cause the most illness during the upcoming flu season. For the past decade, Americans have had access to vaccines that provide protection against two strains of influenza A and two lineages of influenza B, known as the Victoria lineage and the Yamagata lineage. But this year, the seasonal flu shot won’t include the Yamagata strain, because the Yamagata strain is no longer circulating among humans.
How Yamagata Disappeared
Flu surveillance data from the Global Initiative on Sharing All Influenza Data (GISAID) shows that the Yamagata lineage of flu type B has not been sequenced since April 2020.
Nature
Experts believe that the Yamagata lineage had already been in decline before the pandemic hit, likely because the strain was naturally less capable of infecting large numbers of people compared to the other strains. When the COVID-19 pandemic hit, the resulting safety precautions such as social distancing, isolating, hand-washing, and masking were enough to drive the virus into extinction completely.
Because the strain hasn’t been circulating since 2020, the FDA elected to remove the Yamagata strain from the seasonal flu vaccine. This will mark the first time since 2012 that the annual flu shot will be trivalent (three-component) rather than quadrivalent (four-component).
Should I still get the flu shot?
The flu shot will protect against fewer strains this year—but that doesn’t mean we should skip it. Influenza places a substantial health burden on the United States every year, responsible for hundreds of thousands of hospitalizations and tens of thousands of deaths. The flu shot has been shown to prevent millions of illnesses each year (more than six million during the 2022-2023 season). And while it’s still possible to catch the flu after getting the flu shot, studies show that people are far less likely to be hospitalized or die when they’re vaccinated.
Another unexpected benefit of dropping the Yamagata strain from the seasonal vaccine? This will possibly make production of the flu vaccine faster, and enable manufacturers to make more vaccines, helping countries who have a flu vaccine shortage and potentially saving millions more lives.
After his grandmother’s dementia diagnosis, one man invented a snack to keep her healthy and hydrated.
On a visit to his grandmother’s nursing home in 2016, college student Lewis Hornby made a shocking discovery: Dehydration is a common (and dangerous) problem among seniors—especially those that are diagnosed with dementia.
Hornby’s grandmother, Pat, had always had difficulty keeping up her water intake as she got older, a common issue with seniors. As we age, our body composition changes, and we naturally hold less water than younger adults or children, so it’s easier to become dehydrated quickly if those fluids aren’t replenished. What’s more, our thirst signals diminish naturally as we age as well—meaning our body is not as good as it once was in letting us know that we need to rehydrate. This often creates a perfect storm that commonly leads to dehydration. In Pat’s case, her dehydration was so severe she nearly died.
When Lewis Hornby visited his grandmother at her nursing home afterward, he learned that dehydration especially affects people with dementia, as they often don’t feel thirst cues at all, or may not recognize how to use cups correctly. But while dementia patients often don’t remember to drink water, it seemed to Hornby that they had less problem remembering to eat, particularly candy.
Where people with dementia often forget to drink water, they're more likely to pick up a colorful snack, Hornby found. alzheimers.org.uk
Hornby wanted to create a solution for elderly people who struggled keeping their fluid intake up. He spent the next eighteen months researching and designing a solution and securing funding for his project. In 2019, Hornby won a sizable grant from the Alzheimer’s Society, a UK-based care and research charity for people with dementia and their caregivers. Together, through the charity’s Accelerator Program, they created a bite-sized, sugar-free, edible jelly drop that looked and tasted like candy. The candy, called Jelly Drops, contained 95% water and electrolytes—important minerals that are often lost during dehydration. The final product launched in 2020—and was an immediate success. The drops were able to provide extra hydration to the elderly, as well as help keep dementia patients safe, since dehydration commonly leads to confusion, hospitalization, and sometimes even death.
Not only did Jelly Drops quickly become a favorite snack among dementia patients in the UK, but they were able to provide an additional boost of hydration to hospital workers during the pandemic. In NHS coronavirus hospital wards, patients infected with the virus were regularly given Jelly Drops to keep their fluid levels normal—and staff members snacked on them as well, since long shifts and personal protective equipment (PPE) they were required to wear often left them feeling parched.
In April 2022, Jelly Drops launched in the United States. The company continues to donate 1% of its profits to help fund Alzheimer’s research.