A New Web Could be Coming. Will It Improve Human Health?
The Web has provided numerous benefits over the years, but users have also experienced issues related to privacy, cybersecurity, income inequality, and addiction which negatively impact their quality of life. In important ways, the Web has yet to meet its potential to support human health.
Now, engineers are in the process of developing a new version of the Web, called Web3, which would seek to address the Web’s current shortcomings through a mix of new technologies.
It could also create new problems. Industrial revolutions, including new versions of the Web, have trade-offs. While many activists tend to focus on the negative aspects of Web3 technologies, they overlook some of the potential benefits to health and the environment that aren’t as easily quantifiable such as less stressful lives, fewer hours required for work, and a higher standard of living. What emerging technologies are in the mix to define the new era of the digital age, and how will they contribute to our overall health and well-being?
In order to answer these questions, I have identified three major trends that may help define the future landscape of Web3. These include more powerful machine intelligence that could drive improvements in healthcare, decentralized banking systems that allow consumers to bypass middlemen, and self-driving cars with potential to reduce pollution. However, it is the successes of the enabling technologies that support these goals—improvements in AI, blockchain and smart contracts, and fog computing—that will ultimately define Web3.
Machine Intelligence and Diagnosing Diseases
While the internet is the physical network equipment and computers that keep the world connected, the Web is one of the services that run on the internet. In 1989, British scientist Tim Berners-Lee invented the World Wide Web and, when Web1 went live in 1991, it consisted of pages of text connected by hyperlinks. It remained that way until 2004 with the introduction of Web2, which provided social media websites and let users generate content in addition to consuming it passively.
The Semantic Web could expand the impact of new cognitive skills for machines by feeding data to AI in more readily accessible formats. This will make machines better at solving hard problems such as diagnosing and treating complex diseases.
For the most part, Web2 is what we still have today but, from the beginning, Berners-Lee, now an MIT professor, envisaged a much more sophisticated version of the Web. Known as the Semantic Web, it would not only store data, but actually know what it means. The goal is to make all information on the Internet “machine-readable,” so it can be easily processed by computers, like an Excel sheet full of numbers as opposed to human language. We are now in the early stages of the Semantic Web, which incorporates his vision. For example, there is already a cloud of datasets that links thousands of servers without any form of centralized control. However, due to the costs and technological hurdles related to converting human language into something that computers can understand, the Semantic Web remains an ongoing project.
Currently, AI is only able to perform certain tasks, but it can already make healthcare business practices more efficient by leveraging deep learning to analyze data in supply chains. DeepMind, the company that developed AI for defeating chess masters, has also made huge advances in figuring out protein folding and misfolding, which is responsible for some diseases. Currently, AI is not that useful for diagnosing and treating many complex diseases. This is because deep learning is probabilistic, not causal. So, it is able to understand correlation, but not cause and effect.
Like the Web, though, AI is evolving, and the limitations of deep learning could be overcome in the foreseeable future. A number of government programs and private initiatives are dedicated to better understanding human brain complexity and equipping machines with reasoning, common sense, and the ability to understand cause and effect. The Semantic Web could expand the impact of these new cognitive skills by feeding data to AI in more readily accessible formats. This will make machines better at solving hard problems such as diagnosing and treating complex diseases, which involve genetic, lifestyle, and environment factors. These powerful AIs in the realm of healthcare could become an enduring and important feature of Web3.
Blockchain, Smart Contracts and Income Inequality
The Web2 version of the digital age was certainly impactful in altering our lifestyle both positively and negatively. This is predominately because of the business model used by companies such as Meta (formerly Facebook) and Google. By providing useful products like search engines, these companies have lured consumers into giving away their personal data for free, and the companies use this information to detect buying patterns in order to sell advertising. The digital economy made high tech companies billions of dollars while many users became underemployed or jobless.
In recent years, a similar model has been emerging in the realm of genetics. Personalized genomic companies charge a relatively small fee to analyze a fraction of our genes and provide probabilities of having specific medical conditions. While individual data is not valuable, cumulative data is helpful for deep learning. So, these companies can sell the anonymous DNA data to pharmaceutical companies for millions of dollars.
As these companies improve their ability to collect even more data about our genetic vulnerabilities, the technologies of Web3 could protect consumers from giving it away for free. An emerging technology called blockchain is able to provide a Web-based ledger of financial transactions with checks and balances to ensure that its records cannot be faked or altered. It has yet to reach mass adoption by the public, but the computer scientist Jaron Lanier has proposed storing our genomes and electronic health records in blockchain, utilizing electronic smart contracts between individuals and pharma healthcare industry. Micropayments could then be made to individuals for their data, using cryptocurrency.
These individual payments could become more lucrative in the coming years especially as researchers learn how to fully interpret and apply a person’s genetic data. In this way, blockchain could lead to improvements in income inequality, which currently drives health problems and other challenges for many. A number of start-ups are using this business model which has secure data and eliminates middlemen who don’t create any value, while compensating and protecting the privacy of individuals who contribute their health data.
Autonomous Vehicles, Fog Computing and Pollution
A number of trends indicate that modernizing the transportation industry would address a myriad of problems with public health, productivity and the environment. Autonomous vehicles (AVs) could help usher in this new era of transportation, and these AVs would need to be supported by Web3 technologies.
Automobile accidents are the second leading cause of death worldwide, with roughly 1.3 million fatalities annually, according to the World Health Organization. Some estimates suggest that replacing human drivers with AVs could eliminate as many as a million global fatalities annually. Shared AVs would help to reduce traffic congestion that wastes time and fuel, and electric vehicles would help minimize greenhouse gases.
To reap the benefits from replacing gas vehicles with electric, societies will need an infrastructure that enables self-driving cars to communicate with each other. Most data processing in computers is performed using von Neumann architecture, where the data memory and the processor are in two different places. Today, that typically means cloud computing. With self-driving cars, when cameras and sensors generate data to detect objects on the roads, processors will need to rapidly analyze the data and make real-time decisions regarding acceleration, braking, and steering. However, cloud computing is susceptible to latency issues.
One solution to latency is moving processing and data storage closer to where it is needed to improve response times. Edge computing, for example, places the processor at the site where the data is generated. Most new human-driven vehicles contain anywhere from 30 to 100 electronic control units (ECUs) that process data and control electrical systems in vehicles. These embedded systems, typically in the dashboard, control different applications such as airbags, steering, brakes, etc. ECUs process data generated by cameras and sensors in AVs and make crucial decisions on how they operate.
Self-driving cars can benefit by communicating with each other for navigation in the same way that bacteria and animals use swarm intelligence for tasks involving groups. Researchers are currently investigating fog computing which utilizes servers along highways for faster and more reliable navigation and for communicating data analytics among driverless cars.
The Future Landscape of Web3 is Uncertain
The future of Web3 has many possibilities. However, there is no guarantee that blockchain, smart contracts, and fog computing will achieve public acceptance and market saturation or prevail over other technologies or the status quo of Web2. It is also uncertain if or when the breakthroughs in AI will occur that could eradicate complex diseases through Web3.
An example of this uncertainty is the metaverse, which combines blockchain with virtual reality. Currently, the metaverse is primarily used for gaming and recreational use until its infrastructure is further developed. Researchers are interested in the long-term mental health effects of virtual reality, both positive and negative. Using avatars, or virtual representations of humans, in the metaverse, users have greater control of their environment and chosen identities. But, it is unclear what negative mental health effects will occur. As far as regulations, the metaverse is still in the Wild West stage, and bullying or even murder will likely take place. Also, there will be a point where virtual worlds like the metaverse will become so immersive that we won't want to leave them, according to Meta’s Zuckerberg.
The metaverse would rely on virtual reality technology that was developed many years ago, and adoption has been slower than some experts predicted. But most emerging technologies, including other examples related to Web3, follow a similar, nonlinear pattern of development that Gartner has represented in graphical form using the S-curve. To develop a technology forecast for Web3, you can follow the progress along the curve from proof of concept to a particular goal. After a series of successes and failures, entrepreneurs will continue to improve their products until each emerging technology fails or achieves mainstream adoption by the public.
What mix of emerging technologies ultimately defines Web3 will likely be determined by the benefits they provide to society—including whether and how they improve health—how they stimulate the digital economy, and how they address the significant shortcomings of Web2.
Last week, researchers at the University of Oxford announced that they have received funding to create a brand new way of preventing ovarian cancer: A vaccine. The vaccine, known as OvarianVax, will teach the immune system to recognize and destroy mutated cells—one of the earliest indicators of ovarian cancer.
Understanding Ovarian Cancer
Despite advancements in medical research and treatment protocols over the last few decades, ovarian cancer still poses a significant threat to women’s health. In the United States alone, more than 12,0000 women die of ovarian cancer each year, and only about half of women diagnosed with ovarian cancer survive five or more years past diagnosis. Unlike cervical cancer, there is no routine screening for ovarian cancer, so it often goes undetected until it has reached advanced stages. Additionally, the primary symptoms of ovarian cancer—frequent urination, bloating, loss of appetite, and abdominal pain—can often be mistaken for other non-cancerous conditions, delaying treatment.
An American woman has roughly a one percent chance of developing ovarian cancer throughout her lifetime. However, these odds increase significantly if she has inherited mutations in the BRCA1 or BRCA2 genes. Women who carry these mutations face a 46% lifetime risk for ovarian and breast cancers.
An Unlikely Solution
To address this escalating health concern, the organization Cancer Research UK has invested £600,000 over the next three years in research aimed at creating a vaccine, which would destroy cancerous cells before they have a chance to develop any further.
Researchers at the University of Oxford are at the forefront of this initiative. With funding from Cancer Research UK, scientists will use tissue samples from the ovaries and fallopian tubes of patients currently battling ovarian cancer. Using these samples, University of Oxford scientists will create a vaccine to recognize certain proteins on the surface of ovarian cancer cells known as tumor-associated antigens. The vaccine will then train that person’s immune system to recognize the cancer markers and destroy them.
The next step
Once developed, the vaccine will first be tested in patients with the disease, to see if their ovarian tumors will shrink or disappear. Then, the vaccine will be tested in women with the BRCA1 or BRCA2 mutations as well as women in the general population without genetic mutations, to see whether the vaccine can prevent the cancer altogether.
While the vaccine still has “a long way to go,” according to Professor Ahmed Ahmed, Director of Oxford University’s ovarian cancer cell laboratory, he is “optimistic” about the results.
“We need better strategies to prevent ovarian cancer,” said Ahmed in a press release from the University of Oxford. “Currently, women with BRCA1/2 mutations are offered surgery which prevents cancer but robs them of the chance to have children afterward.
Teaching the immune system to recognize the very early signs of cancer is a tough challenge. But we now have highly sophisticated tools which give us real insights into how the immune system recognizes ovarian cancer. OvarianVax could offer the solution.”
How sharing, hearing, and remembering positive stories can help shape our brains for the better
Across cultures and through millennia, human beings have always told stories. Whether it’s a group of boy scouts around a campfire sharing ghost stories or the paleolithic Cro-Magnons etching pictures of bison on cave walls, researchers believe that storytelling has been universal to human beings since the development of language.
But storytelling was more than just a way for our ancestors to pass the time. Researchers believe that storytelling served an important evolutionary purpose, helping humans learn empathy, share important information (such as where predators were or what berries were safe to eat), as well as strengthen social bonds. Quite literally, storytelling has made it possible for the human race to survive.
Today, neuroscientists are discovering that storytelling is just as important now as it was millions of years ago. Particularly in sharing positive stories, humans can more easily form relational bonds, develop a more flexible perspective, and actually grow new brain circuitry that helps us survive. Here’s how.
How sharing stories positively impacts the brain
When human beings share stories, it increases the levels of certain neurochemicals in the brain, neuroscientists have found. In a 2021 study published in Proceedings of the National Academy of Sciences (PNAS), Swedish researchers found that simply hearing a story could make hospitalized children feel better, compared to other hospitalized children who played a riddle game for the same amount of time. In their research, children in the intensive care unit who heard stories for just 30 minutes had higher levels of oxytocin, a hormone that promotes positive feelings and is linked to relaxation, trust, social connectedness, and overall psychological stability. Furthermore, the same children showed lower levels of cortisol, a hormone associated with stress. Afterward, the group of children who heard stories tended to describe their hospital experiences more positively, and even reported lower levels of pain.
Annie Brewster, MD, knows the positive effect of storytelling from personal experience. An assistant professor at Harvard Medical School and the author of The Healing Power of Storytelling: Using Personal Narrative to Navigate Illness, Trauma, and Loss, Brewster started sharing her personal experience with chronic illness after being diagnosed with multiple sclerosis in 2001. In doing so, Brewster says it has enabled her to accept her diagnosis and integrate it into her identity. Brewster believes so much in the power of hearing and sharing stories that in 2013 she founded Health Story Collaborative, a forum for others to share their mental and physical health challenges.“I wanted to hear stories of people who had found ways to move forward in positive ways, in spite of health challenges,” Brewster said. In doing so, Brewster believes people with chronic conditions can “move closer to self-acceptance and self-love.”
While hearing and sharing positive stories has been shown to increase oxytocin and other “feel good” chemicals, simply remembering a positive story has an effect on our brains as well. Mark Hoelterhoff, PhD, a lecturer in clinical psychology at the University of Edinburgh, recalling and “savoring” a positive story, thought, or feedback “begins to create new brain circuitry—a new neural network that’s geared toward looking for the positive,” he says. Over time, other research shows, savoring positive stories or thoughts can literally change the shape of your brain, hard-wiring someone to see things in a more positive light.How stories can change your behavior
In 2009, Paul Zak, PhD, a neuroscientist and professor at Claremont Graduate University, set out to measure how storytelling can actually change human behavior for the better. In his study, Zak wanted to measure the behavioral effects of oxytocin, and did this by showing test subjects two short video clips designed to elicit an emotional response.
In the first video they showed the study participants, a father spoke to the camera about his two-year-old son, Ben, who had been diagnosed with terminal brain cancer. The father told the audience that he struggled to connect with and enjoy Ben, as Ben had only a few months left to live. In the end, the father finds the strength to stay emotionally connected to his son until he dies.
The second video clip, however, was much less emotional. In that clip, the same father and son are shown spending the day at the zoo. Ben is only suggested to have cancer (he is bald from chemotherapy and referred to as a ‘miracle’, but the cancer isn’t mentioned directly). The second story lacked the dramatic narrative arc of the first video.
Zak’s team took blood before and after the participants watched one of the two videos and found that the first story increased the viewers’ cortisol and oxytocin, suggesting that they felt distress over the boy’s diagnosis and empathy toward the boy and his father. The second narrative, however, didn’t increase oxytocin or cortisol at all.
But Zak took the experiment a step further. After the movie clips, his team gave the study participants a chance to share money with a stranger in the lab. The participants who had an increase in cortisol and oxytocin were more likely to donate money generously. The participants who had increased cortisol and oxytocin were also more likely to donate money to a charity that works with children who are ill. Zak also found that the amount of oxytocin that was released was correlated with how much money people felt comfortable giving—in other words, the more oxytocin that was released, the more generous they felt, and the more money they donated.
How storytelling strengthens our bond with others
Sharing, hearing, and remembering stories can be a powerful tool for social change–not only in the way it changes our brain and our behavior, but also because it can positively affect our relationships with other people
Emotional stimulation from telling stories, writes Zak, is the foundation for empathy, and empathy strengthens our relationships with other people. “By knowing someone’s story—where they come from, what they do, and who you might know in common—relationships with strangers are formed.”
But why are these relationships important for humanity? Because human beings can use storytelling to build empathy and form relationships, it enables them to “engage in the kinds of large-scale cooperation that builds massive bridges and sends humans into space,” says Zak.
Storytelling, Zak found, and the oxytocin release that follows, also makes people more sensitive to social cues. This sensitivity not only motivates us to form relationships, but also to engage with other people and offer help, particularly if the other person seems to need help.
But as Zak found in his experiments, the type of storytelling matters when it comes to affecting relationships. Where Zak found that storytelling with a dramatic arc helps release oxytocin and cortisol, enabling people to feel more empathic and generous, other researchers have found that sharing happy stories allows for greater closeness between individuals and speakers. A group of Chinese researchers found that, compared to emotionally-neutral stories, happy stories were more “emotionally contagious.” Test subjects who heard happy stories had greater activation in certain areas of their brains, experienced more significant, positive changes in their mood, and felt a greater sense of closeness between themselves and the speaker.
“This finding suggests that when individuals are happy, they become less self-focused and then feel more intimate with others,” the authors of the study wrote. “Therefore, sharing happiness could strengthen interpersonal bonding.” The researchers went on to say that this could lead to developing better social networks, receiving more social support, and leading more successful social lives.
Since the start of the COVID pandemic, social isolation, loneliness, and resulting mental health issues have only gotten worse. In light of this, it’s safe to say that hearing, sharing, and remembering stories isn’t just something we can do for entertainment. Storytelling has always been central to the human experience, and now more than ever it’s become something crucial for our survival.
Want to know how you can reap the benefits of hearing happy stories? Keep an eye out for Upworthy’s first book, GOOD PEOPLE: Stories from the Best of Humanity, published by National Geographic/Disney, available on September 3, 2024. GOOD PEOPLE is a much-needed trove of life-affirming stories told straight from the heart. Handpicked from Upworthy’s community, these 101 stories speak to the breadth, depth, and beauty of the human experience, reminding us we have a lot more in common than we realize.