Who’s Responsible If a Scientist’s Work Is Used for Harm?
Are scientists morally responsible for the uses of their work? To some extent, yes. Scientists are responsible for both the uses that they intend with their work and for some of the uses they don't intend. This is because scientists bear the same moral responsibilities that we all bear, and we are all responsible for the ends we intend to help bring about and for some (but not all) of those we don't.
To not think about plausible unintended effects is to be negligent -- and to recognize, but do nothing about, such effects is to be reckless.
It should be obvious that the intended outcomes of our work are within our sphere of moral responsibility. If a scientist intends to help alleviate hunger (by, for example, breeding new drought-resistant crop strains), and they succeed in that goal, they are morally responsible for that success, and we would praise them accordingly. If a scientist intends to produce a new weapon of mass destruction (by, for example, developing a lethal strain of a virus), and they are unfortunately successful, they are morally responsible for that as well, and we would blame them accordingly. Intention matters a great deal, and we are most praised or blamed for what we intend to accomplish with our work.
But we are responsible for more than just the intended outcomes of our choices. We are also responsible for unintended but readily foreseeable uses of our work. This is in part because we are all responsible for thinking not just about what we intend, but also what else might follow from our chosen course of action. In cases where severe and egregious harms are plausible, we should act in ways that strive to prevent such outcomes. To not think about plausible unintended effects is to be negligent -- and to recognize, but do nothing about, such effects is to be reckless. To be negligent or reckless is to be morally irresponsible, and thus blameworthy. Each of us should think beyond what we intend to do, reflecting carefully on what our course of action could entail, and adjusting our choices accordingly.
It is this area, of unintended but readily foreseeable (and plausible) impacts, that often creates the most difficulty for scientists. Many scientists can become so focused on their work (which is often demanding) and so focused on achieving their intended goals, that they fail to stop and think about other possible implications.
Debates over "dual-use" research exemplify these concerns, where harmful potential uses of research might mean the work should not be pursued, or the full publication of results should be curtailed. When researchers perform gain-of-function research, pushing viruses to become more transmissible or more deadly, it is clear how dangerous such work could be in the wrong hands. In these cases, it is not enough to simply claim that such uses were not intended and that it is someone else's job to ensure that the materials remain secure. We know securing infectious materials can be error-prone (recall events at the CDC and the FDA).
In some areas of research, scientists are already worrying about the unintended possible downsides of their work.
Further, securing viral strains does nothing to secure the knowledge that could allow for reproducing the viral strain (particularly when the methodologies and/or genetic sequences are published after the fact, as was the case for H5N1 and horsepox). It is, in fact, the researcher's moral responsibility to be concerned not just about the biosafety controls in their own labs, but also which projects should be pursued (Will the gain in knowledge be worth the possible downsides?) and which results should be published (Will a result make it easier for a malicious actor to deploy a new bioweapon?).
We have not yet had (to my knowledge) a use of gain-of-function research to harm people. If that does happen, those who actually released the virus on the public will be most blameworthy–-intentions do matter. But the scientists who developed the knowledge deployed by the malicious actors may also be held blameworthy, especially if the malicious use was easy to foresee, even if it was not pleasant to think about.
In some areas of research, scientists are already worrying about the unintended possible downsides of their work. Scientists investigating gene drives have thought beyond the immediate desired benefits of their work (e.g. reducing invasive species populations) and considered the possible spread of gene drives to untargeted populations. Modeling the impacts of such possibilities has led some researchers to pull back from particular deployment possibilities. It is precisely such thinking through both the intended and unintended possible outcomes that is needed for responsible work.
The world has gotten too small, too vulnerable for scientists to act as though they are not responsible for the uses of their work, intended or not. They must seek to ensure that, as the recent AAAS Statement on Scientific Freedom and Responsibility demands, their work is done "in the interest of humanity." This requires thinking beyond one's intentions, potentially drawing on the expertise of others, sometimes from other disciplines, to help explore implications. The need for such thinking does not guarantee good outcomes, but it will ensure that we are doing the best we can, and that is what being morally responsible is all about.
Stronger psychedelics that rewire the brain, with Doug Drysdale
A promising development in science in recent years has been the use technology to optimize something natural. One-upping nature's wisdom isn't easy. In many cases, we haven't - and maybe we can't - figure it out. But today's episode features a fascinating example: using tech to optimize psychedelic mushrooms.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
These mushrooms have been used for religious, spiritual and medicinal purposes for thousands of years, but only in the past several decades have scientists brought psychedelics into the lab to enhance them and maximize their therapeutic value.
Today’s podcast guest, Doug Drysdale, is doing important work to lead this effort. Drysdale is the CEO of a company called Cybin that has figured out how to make psilocybin more potent, so it can be administered in smaller doses without side effects.
The natural form of psilocybin has been studied increasingly in the realm of mental health. Taking doses of these mushrooms appears to help people with anxiety and depression by spurring the development of connections in the brain, an example of neuroplasticity. The process basically shifts the adult brain from being fairly rigid like dried clay into a malleable substance like warm wax - the state of change that's constantly underway in the developing brains of children.
Neuroplasticity in adults seems to unlock some of our default ways of of thinking, the habitual thought patterns that’ve been associated with various mental health problems. Some promising research suggests that psilocybin causes a reset of sorts. It makes way for new, healthier thought patterns.
So what is Drysdale’s secret weapon to bring even more therapeutic value to psilocybin? It’s a process called deuteration. It focuses on the hydrogen atoms in psilocybin. These atoms are very light and don’t stick very well to carbon, which is another atom in psilocybin. As a result, our bodies can easily breaks down the bonds between the hydrogen and carbon atoms. For many people, that means psilocybin gets cleared from the body too quickly, before it can have a therapeutic benefit.
In deuteration, scientists do something simple but ingenious: they replace the hydrogen atoms with a molecule called deuterium. It’s twice as heavy as hydrogen and forms tighter bonds with the carbon. Because these pairs are so rock-steady, they slow down the rate at which psilocybin is metabolized, so it has more sustained effects on our brains.
Cybin isn’t Drysdale’s first go around at this - far from it. He has over 30 years of experience in the healthcare sector. During this time he’s raised around $4 billion of both public and private capital, and has been named Ernst and Young Entrepreneur of the Year. Before Cybin, he was the founding CEO of a pharmaceutical company called Alvogen, leading it from inception to around $500 million in revenues, across 35 countries. Drysdale has also been the head of mergers and acquisitions at Actavis Group, leading 15 corporate acquisitions across three continents.
In this episode, Drysdale walks us through the promising research of his current company, Cybin, and the different therapies he’s developing for anxiety and depression based not just on psilocybin but another psychedelic compound found in plants called DMT. He explains how they seem to have such powerful effects on the brain, as well as the potential for psychedelics to eventually support other use cases, including helping us strive toward higher levels of well-being. He goes on to discuss his views on mindfulness and lifestyle factors - such as optimal nutrition - that could help bring out hte best in psychedelics.
Show links:
Doug Drysdale full bio
Doug Drysdale twitter
Cybin website
Cybin development pipeline
Cybin's promising phase 2 research on depression
Johns Hopkins psychedelics research and psilocybin research
Mets owner Steve Cohen invests in psychedelic therapies
Doug Drysdale, CEO of Cybin
How the body's immune resilience affects our health and lifespan
Story by Big Think
It is a mystery why humans manifest vast differences in lifespan, health, and susceptibility to infectious diseases. However, a team of international scientists has revealed that the capacity to resist or recover from infections and inflammation (a trait they call “immune resilience”) is one of the major contributors to these differences.
Immune resilience involves controlling inflammation and preserving or rapidly restoring immune activity at any age, explained Weijing He, a study co-author. He and his colleagues discovered that people with the highest level of immune resilience were more likely to live longer, resist infection and recurrence of skin cancer, and survive COVID and sepsis.
Measuring immune resilience
The researchers measured immune resilience in two ways. The first is based on the relative quantities of two types of immune cells, CD4+ T cells and CD8+ T cells. CD4+ T cells coordinate the immune system’s response to pathogens and are often used to measure immune health (with higher levels typically suggesting a stronger immune system). However, in 2021, the researchers found that a low level of CD8+ T cells (which are responsible for killing damaged or infected cells) is also an important indicator of immune health. In fact, patients with high levels of CD4+ T cells and low levels of CD8+ T cells during SARS-CoV-2 and HIV infection were the least likely to develop severe COVID and AIDS.
Individuals with optimal levels of immune resilience were more likely to live longer.
In the same 2021 study, the researchers identified a second measure of immune resilience that involves two gene expression signatures correlated with an infected person’s risk of death. One of the signatures was linked to a higher risk of death; it includes genes related to inflammation — an essential process for jumpstarting the immune system but one that can cause considerable damage if left unbridled. The other signature was linked to a greater chance of survival; it includes genes related to keeping inflammation in check. These genes help the immune system mount a balanced immune response during infection and taper down the response after the threat is gone. The researchers found that participants who expressed the optimal combination of genes lived longer.
Immune resilience and longevity
The researchers assessed levels of immune resilience in nearly 50,000 participants of different ages and with various types of challenges to their immune systems, including acute infections, chronic diseases, and cancers. Their evaluation demonstrated that individuals with optimal levels of immune resilience were more likely to live longer, resist HIV and influenza infections, resist recurrence of skin cancer after kidney transplant, survive COVID infection, and survive sepsis.
However, a person’s immune resilience fluctuates all the time. Study participants who had optimal immune resilience before common symptomatic viral infections like a cold or the flu experienced a shift in their gene expression to poor immune resilience within 48 hours of symptom onset. As these people recovered from their infection, many gradually returned to the more favorable gene expression levels they had before. However, nearly 30% who once had optimal immune resilience did not fully regain that survival-associated profile by the end of the cold and flu season, even though they had recovered from their illness.
Intriguingly, some people who are 90+ years old still have optimal immune resilience, suggesting that these individuals’ immune systems have an exceptional capacity to control inflammation and rapidly restore proper immune balance.
This could suggest that the recovery phase varies among people and diseases. For example, young female sex workers who had many clients and did not use condoms — and thus were repeatedly exposed to sexually transmitted pathogens — had very low immune resilience. However, most of the sex workers who began reducing their exposure to sexually transmitted pathogens by using condoms and decreasing their number of sex partners experienced an improvement in immune resilience over the next 10 years.
Immune resilience and aging
The researchers found that the proportion of people with optimal immune resilience tended to be highest among the young and lowest among the elderly. The researchers suggest that, as people age, they are exposed to increasingly more health conditions (acute infections, chronic diseases, cancers, etc.) which challenge their immune systems to undergo a “respond-and-recover” cycle. During the response phase, CD8+ T cells and inflammatory gene expression increase, and during the recovery phase, they go back down.
However, over a lifetime of repeated challenges, the immune system is slower to recover, altering a person’s immune resilience. Intriguingly, some people who are 90+ years old still have optimal immune resilience, suggesting that these individuals’ immune systems have an exceptional capacity to control inflammation and rapidly restore proper immune balance despite the many respond-and-recover cycles that their immune systems have faced.
Public health ramifications could be significant. Immune cell and gene expression profile assessments are relatively simple to conduct, and being able to determine a person’s immune resilience can help identify whether someone is at greater risk for developing diseases, how they will respond to treatment, and whether, as well as to what extent, they will recover.