Why Are Autism Rates Steadily Rising?
Stefania Sterling was just 21 when she had her son, Charlie. She was young and healthy, with no genetic issues apparent in either her or her husband's family, so she expected Charlie to be typical.
"It is surprising that the prevalence of a significant disorder like autism has risen so consistently over a relatively brief period."
It wasn't until she went to a Mommy and Me music class when he was one, and she saw all the other one-year-olds walking, that she realized how different her son was. He could barely crawl, didn't speak, and made no eye contact. By the time he was three, he was diagnosed as being on the lower functioning end of the autism spectrum.
She isn't sure why it happened – and researchers, too, are still trying to understand the basis of the complex condition. Studies suggest that genes can act together with influences from the environment to affect development in ways that lead to Autism Spectrum Disorder (ASD). But rates of ASD are rising dramatically, making the need to figure out why it's happening all the more urgent.
The Latest News
Indeed, the CDC's latest autism report, released last week, which uses 2016 data, found that the prevalence of ASD in four-year-old children was one in 64 children, or 15.6 affected children per 1,000. That's more than the 14.1 rate they found in 2014, for the 11 states included in the study. New Jersey, as in years past, was the highest, with 25.3 per 1,000, compared to Missouri, which had just 8.8 per 1,000.
The rate for eight-year-olds had risen as well. Researchers found the ASD prevalence nationwide was 18.5 per 1,000, or one in 54, about 10 percent higher than the 16.8 rate found in 2014. New Jersey, again, was the highest, at one in 32 kids, compared to Colorado, which had the lowest rate, at one in 76 kids. For New Jersey, that's a 175 percent rise from the baseline number taken in 2000, when the state had just one in 101 kids.
"It is surprising that the prevalence of a significant disorder like autism has risen so consistently over a relatively brief period," said Walter Zahorodny, an associate professor of pediatrics at Rutgers New Jersey Medical School, who was involved in collecting the data.
The study echoed the findings of a surprising 2011 study in South Korea that found 1 in every 38 students had ASD. That was the the first comprehensive study of autism prevalence using a total population sample: A team of investigators from the U.S., South Korea, and Canada looked at 55,000 children ages 7 to 12 living in a community in South Korea and found that 2.64 percent of them had some level of autism.
Searching for Answers
Scientists can't put their finger on why rates are rising. Some say it's better diagnosis. That is, it's not that more people have autism. It's that we're better at detecting it. Others attribute it to changes in the diagnostic criteria. Specifically, the May 2013 update of the Diagnostic and Statistical Manual of Mental Disorders-5 -- the standard classification of mental disorders -- removed the communication deficit from the autism definition, which made more children fall under that category. Cynical observers believe physicians and therapists are handing out the diagnosis more freely to allow access to services available only to children with autism, but that are also effective for other children.
Alycia Halladay, chief science officer for the Autism Science Foundation in New York, said she wishes there were just one answer, but there's not. While she believes the rising ASD numbers are due in part to factors like better diagnosis and a change in the definition, she does not believe that accounts for the entire rise in prevalence. As for the high numbers in New Jersey, she said the state has always had a higher prevalence of autism compared to other states. It is also one of the few states that does a good job at recording cases of autism in its educational records, meaning that children in New Jersey are more likely to be counted compared to kids in other states.
"Not every state is as good as New Jersey," she said. "That accounts for some of the difference compared to elsewhere, but we don't know if it's all of the difference in prevalence, or most of it, or what."
"What we do know is that vaccinations do not cause autism."
There is simply no defined proven reason for these increases, said Scott Badesch, outgoing president and CEO of the Autism Society of America.
"There are suggestions that it is based on better diagnosis, but there are also suggestions that the incidence of autism is in fact increasing due to reasons that have yet been determined," he said, adding, "What we do know is that vaccinations do not cause autism."
Zahorodny, the pediatrics professor, believes something is going on beyond better detection or evolving definitions.
"Changes in awareness and shifts in how children are identified or diagnosed are relevant, but they only take you so far in accounting for an increase of this magnitude," he said. "We don't know what is driving the surge in autism recorded by the ADDM Network and others."
He suggested that the increase in prevalence could be due to non-genetic environmental triggers or risk factors we do not yet know about, citing possibilities including parental age, prematurity, low birth rate, multiplicity, breech presentation, or C-section delivery. It may not be one, but rather several factors combined, he said.
"Increases in ASD prevalence have affected the whole population, so the triggers or risks must be very widely dispersed across all strata," he added.
There are studies that find new risk factors for ASD almost on a daily basis, said Idan Menashe, assistant professor in the Department of Health at Ben-Gurion University of the Negev, the fastest growing research university in Israel.
"There are plenty of studies that find new genetic variants (and new genes)," he said. In addition, various prenatal and perinatal risk factors are associated with a risk of ASD. He cited a study his university conducted last year on the relationship between C-section births and ASD, which found that exposure to general anesthesia may explain the association.
Whatever the cause, health practitioners are seeing the consequences in real time.
"People say rates are higher because of the changes in the diagnostic criteria," said Dr. Roseann Capanna-Hodge, a psychologist in Ridgefield, CT. "And they say it's easier for children to get identified. I say that's not the truth and that I've been doing this for 30 years, and that even 10 years ago, I did not see the level of autism that I do see today."
Sure, we're better at detecting autism, she added, but the detection improvements have largely occurred at the low- to mid- level part of the spectrum. The higher rates of autism are occurring at the more severe end, in her experience.
A Polarizing Theory
Among the more controversial risk factors scientists are exploring is the role environmental toxins may play in the development of autism. Some scientists, doctors and mental health experts suspect that toxins like heavy metals, pesticides, chemicals, or pollution may interrupt the way genes are expressed or the way endocrine systems function, manifesting in symptoms of autism. But others firmly resist such claims, at least until more evidence comes forth. To date, studies have been mixed and many have been more associative than causative.
"Today, scientists are still trying to figure out whether there are other environmental changes that can explain this rise, but studies of this question didn't provide any conclusive answer," said Menashe, who also serves as the scientific director of the National Autism Research Center at BGU.
"It's not everything that makes Charlie. He's just like any other kid."
That inconclusiveness has not dissuaded some doctors from taking the perspective that toxins do play a role. "Autism rates are rising because there is a mismatch between our genes and our environment," said Julia Getzelman, a pediatrician in San Francisco. "The majority of our evolution didn't include the kinds of toxic hits we are experiencing. The planet has changed drastically in just the last 75 years –- it has become more and more polluted with tens of thousands of unregulated chemicals being used by industry that are having effects on our most vulnerable."
She cites BPA, an industrial chemical that has been used since the 1960s to make certain plastics and resins. A large body of research, she says, has shown its impact on human health and the endocrine system. BPA binds to our own hormone receptors, so it may negatively impact the thyroid and brain. A study in 2015 was the first to identify a link between BPA and some children with autism, but the relationship was associative, not causative. Meanwhile, the Food and Drug Administration maintains that BPA is safe at the current levels occurring in food, based on its ongoing review of the available scientific evidence.
Michael Mooney, President of St. Louis-based Delta Genesis, a non-profit organization that treats children struggling with neurodevelopmental delays like autism, suspects a strong role for epigenetics, which refers to changes in how genes are expressed as a result of environmental influences, lifestyle behaviors, age, or disease states.
He believes some children are genetically predisposed to the disorder, and some unknown influence or combination of influences pushes them over the edge, triggering epigenetic changes that result in symptoms of autism.
For Stefania Sterling, it doesn't really matter how or why she had an autistic child. That's only one part of Charlie.
"It's not everything that makes Charlie," she said. "He's just like any other kid. He comes with happy moments. He comes with sad moments. Just like my other three kids."
Regulation Too Often Shackles the Hands of Innovators
[Editor's Note: Our Big Moral Question this month is, "Do government regulations help or hurt the goal of responsible and timely scientific innovation?"]
After biomedical scientists demonstrated that they could make dangerous viruses like influenza even more dangerous, the National Institutes of Health (NIH) implemented a three-year moratorium on funding such research. But a couple of months ago, in December, the moratorium was lifted, and a tight set of rules were put in its place, such as a mandate for oversight panels.
"The sort of person who thinks like a bureaucratic regulator isn't the sort of person who thinks like a scientist."
The prospect of engineering a deadly pandemic virus in a laboratory suggests that only a fool would wish away government regulation entirely.
However, as a whole, regulation has done more harm than good in the arena of scientific innovation. The reason is that the sort of person who thinks like a bureaucratic regulator isn't the sort of person who thinks like a scientist. The sad fact of the matter is that those most interested in the regulatory process tend to be motivated by politics and ideology rather than scientific inquiry and technological progress.
Consider genetically engineered crops and animals, for instance. Beyond any reasonable doubt, data consistently have shown them to be safe, yet they are routinely held in regulatory limbo. For instance, it took 20 years for the AquAdvantage salmon, which grows faster than ordinary salmon, to gain approval from the FDA. What investor in his right mind would fund an entrepreneurial scientist who wishes to create genetically engineered consumer goods when he is assured that any such product could be subjected to two decades of arbitrary and pointless bureaucratic scrutiny?
Other well-intentioned regulations have created enormous problems for society. Medicine costs too much. One reason is that there is no international competition in the U.S. marketplace because it is nearly impossible to import drugs from other countries. The FDA's overcautious attitude toward approving new medications has ushered in a grassroots "right-to-try" movement, in which terminal patients are demanding access to potentially life-saving (but also potentially dangerous) treatments that are not yet federally approved. The FDA's sluggishness in approving generics also allowed the notorious former hedge fund manager Martin Shkreli to jack up the price of a drug for HIV patients because there were no competitors on the market. Thankfully, the FDA and politicians are now aware of these self-inflicted problems and are proposing possible solutions.
"Other well-intentioned regulations have created enormous problems for society."
The regulatory process itself drags on far too long and consists of procedural farces, none more so than public hearings and the solicitation of public comments. Hearings are often dominated by activists who are more concerned with theatrics and making the front page of a newspaper rather than contributing meaningfully to the scientific debate.
It is frankly absurd to believe that scientifically untrained laypeople have anything substantive to say on matters like biomedical regulation. The generals at the Pentagon quite rightly do not seek the public's council before they draw up battlefield plans, so why should scientists be subjected to an unjustifiable level of public scrutiny? Besides, there is a good chance that a substantial proportion of feedback is fake, anyway: A Wall Street Journal investigation uncovered that thousands of posts on federal websites seeking public comment on topics like net neutrality are fraudulent.
In other cases, out-of-date regulations remain on the books, holding back progress. For more than 20 years, the Dickey-Wicker Amendment has tied the hands of the NIH, essentially preventing it from funding any research that must first create human embryos or derive new embryonic stem cell lines. This seriously impedes progress in regenerative medicine and dampens the potential revolutionary potential of CRISPR, a genome editing tool that could someday be used in adult gene therapy or to "fix" unhealthy human embryos.
"Regulators and especially politicians give the false impression that any new scientific innovation should be made perfectly safe before it is allowed on the market."
Biomedicine isn't the only science to suffer at the hands of regulators. For years, the Nuclear Regulatory Commission (NRC) – an organization ostensibly concerned about nuclear safety – instead has played politics with nuclear power, particularly over a proposed waste storage facility at Yucca Mountain. Going all the way back to the Reagan administration, Yucca has been subjected to partisan assaults, culminating in the Obama administration's mothballing the project. Under the Trump administration, the NRC is once again reconsidering its future.
Perhaps the biggest problem that results from overregulation is a change in the culture. Regulators and especially politicians give the false impression that any new scientific innovation should be made perfectly safe before it is allowed on the market. This notion is known as the precautionary principle, and it is the law in the European Union. The precautionary principle is a form of technological timidity that is partially to blame for Europe's lagging behind America in groundbreaking research.
Besides, perfect safety is an impossible goal. Nothing in life is perfectly safe. The same people who drive to Whole Foods to avoid GMOs and synthetic pesticides seem not to care that automobiles kill 30,000 Americans every single year.
Government regulation is necessary because people rightfully expect a safe place to work and live. However, charlatans and lawbreakers will always exist, no matter how many new rules are added. The proliferation of safety regulations, therefore, often results in increasing the burden on innovators without any concomitant increase in safety. Like an invasive weed, government regulation has spread far beyond its proper place in the ecosystem. It's time for a weedkiller.
[Ed. Note: Check out the opposite viewpoint here, and follow LeapsMag on social media to share your perspective.]
To Speed Treatments, Non-Traditional Partnerships May Be the Future
Drug development becomes even more complex as time passes. Increased regulation, new scientific methods, coupling of drugs with biomarkers, and an attempt to build drugs for much more specific populations – even individuals – all make clinical development more expensive and time-consuming. But the pressure is also constantly increasing to develop new, innovative medicines faster. So companies invest more dollars, with steadily decreasing yields in terms of such drugs on the market.
"Collaborations are in many cases the only possible solution--a powerful force driving old and new models."
The traditional models for clinical development are thus not producing the best results. Can collaboration between companies, academic institutions, and public (government and non-profit) organizations help solve the problem?
Collaboration has in fact yielded important developments in diagnostic and therapeutic products. However, truly collaborative efforts are in the minority. Particularly for biotech, diagnostic, device and pharmaceutical companies with stock traded on the public markets, or with funding from venture capital, private equity, or other investment-oriented platforms, there are strong drivers for limiting collaboration.
Particularly onerous are intellectual property (IP) concerns. Patent attorneys are normally terrified of collaborations, where the ownership of IP may be explicitly or implicitly impaired. Investment banks and fund managers are very nervous about modeling financial returns on new products where IP is shared. Development companies often have overt or implied policies greatly favoring internal development over collaboration. It could be argued that the greatest motivation behind the huge product in-licensing game is the desire to fully own product rights rather than to continue collaborations where the rights are not exclusive.
Bu the good news is that long-standing models and newer innovations in collaboration do work. Some examples are worth exploring. A huge influence currently on collaboration models across the spectrum is the revolution in immuno-oncology. More cash has gone into the development of drugs which enlist the immune system to attack cancer than any other field of drug development in history, some estimate by a factor of three. The great majority of current human clinical trials in the U.S. are in this field. There are over 200 separate drugs in development that attack a single target, PD-1--completely unprecedented. Due to the vast complexity of the human immune system, and also to the great promise that these drugs have shown in previously intractable cancers, the field has recognized that these drugs can only perform to full potential when used in combination. But the rationale for combinations is very obtuse, there are huge numbers of new drug targets and candidates, and there are many hundreds of institutions and companies involved in development of these combinations. Thus, collaborations are in many cases the only possible solution--a powerful force driving old and new models.
"As drugs have become more expensive, a huge drive has emerged, spurred by the brokers of health care, to limit the populations eligible to be prescribed an expensive new drug."
As marketing and reimbursement become increasingly complex, large commercial companies share the marketing of more products. Almost every large pharmaceutical and biotech company has products which are jointly sold with others.
Some pharmaceutical companies do a creditable job, often driven by ethical rather than economic concerns, of identifying drugs in their commercial or development portfolios which would be best in the hands of others, or which should be combined with products owned by others to achieve maximum patient benefit. Pfizer, for example, has a strong internal culture of not allowing products to become "dormant" in its hands, and actively seeks to collaboratively develop or license out such products.
Particularly in the immuno-oncology field, given the lack of firm knowledge about which combinations will work best in patients, both large and small companies are collaborating on both preclinical and clinical development. Merck, with its drug Keytruda, the leading anti-PD-1, has almost 1000 collaborative trials in progress. In most cases, the IP rights to a successful combination are not specified up-front; the desire is to see what works and deal with the rights and financial issues later.
Other companies have specifically engaged non-profit foundations and/or public bodies in collaborative efforts. This is of course not new--there is a very long history of pharmaceutical, diagnostic, and device companies either collaborating with the NIH or disease-focused foundations for development of products born from institutional research. The reverse is also true--both the NIH and foundations are often engaged to collaborate on development of products owned by industry. Sometimes these collaborations can be relatively complex. For example, Astra-Zeneca, Sloan Kettering, the Cancer Research Institute, and the National Cancer institute have engaged in a partnership to conduct clinical trials on combination cancer therapies involving the portfolio owned by Astra-Zeneca in combination with drugs owned by others, with device therapies and procedures, and with diagnostic products.
As drugs have become more expensive, a huge drive has emerged, spurred by the brokers of health care--the so-called 'insurance' companies and pharmaceutical benefit managers--to limit the populations eligible to be prescribed an expensive new drug. Thus, the field of "companion diagnostics" has crystallized. In a number of fields, including cardiology, urology, neurodegenerative disease, and oncology, developers of diagnostics and drugs seek each other out to jointly develop drug/diagnostic pairs which appropriately select patients for treatment. The number of such collaborations is escalating dramatically, although many large pharmaceutical companies have their own in-house programs.
"The lack of clinical trial data sharing has engendered some notable collaborative efforts."
But most large pharmaceutical companies are not in the business of selling diagnostic products, even if those products are so closely linked to a specific drug that they are included in the FDA-approved 'label' of that drug. As a result, some very collaborative relationships are emerging. Merck, which has a very large and active companion diagnostics development group, almost always seeks development and commercialization partners for internally innovated diagnostics – to the extent that the company actually gives away the rights and the commercial benefits of the diagnostic product. Such was the case with the Merck-developed Tau imaging agents related to Alzheimer's disease, which Merck made available without license to the entire industry. The company continues to drive such non-financial collaborations in other clinical disciplines.
Collaborations certainly take place between academic centers, but in comparison to others, they are few and of far less productive outcome. Many appear to be innovative and have great potential, but the results are often different. The collaboration between medical schools and research institutions in Northeast Ohio seems promising, but it is in large part just a means for gathering hard-to-find clinical trial patients into the giant local institutions, Case Western and the Cleveland Clinic. And the actual output of academic versus commercial development programs is usually poor. One new company recently did an exhaustive search for new clinical drug development candidates in a specific therapeutic area in academia and came up empty-handed, only to find a solid handful of candidate drugs "hiding" in pharmaceutical companies that they were willing to provide collaboratively or to license.
The lack of clinical trial data sharing has engendered some notable collaborative efforts. The Parker Institute for Cancer Immunotherapy initially set out to promulgate standards for clinical trial data collection to make trial results in the thousands of combination trials more comparable. However, after some initial frustration, they are now working collaboratively with biotech companies, academia, and pharmaceutical companies to drive forward specific combination trials that experts believe should be done.
Foundations and public organizations also enable or initiate collaborative research. The Prostate Cancer Foundation has aggressively put academic and hospital-based research institutions together with industry to push the development of new effective therapies and diagnostics for prostate cancer, with remarkable success. The Veterans Administration has recently embarked on an aggressive program of collaborations with industry (with the help of funding from the Prostate Cancer Foundation) to allow use of the VA population and the very complete patient records to start clinical trials and other development efforts that would otherwise be very difficult.
"The near future will bring some surprising collaborative successes in the development of new drugs, devices, and diagnostics, but of course, some serious disappointments as well."
Finally, the financial industry at times facilitates collaborations, although they are usually narrow. Fund managers often get two or more of their portfolio companies to pool assets and/or IP to push forward more rapid development, or to provide structure for developments that otherwise could not go forward due to size or other resource limitations. For example, Orbimed, a health-care-focused investment firm, consistently drives cross-company development efforts within its large portfolio of drug and device companies.
So collaborative efforts are very much alive and well, which is great news for patients. Current realities in science, politics, reimbursement, and finance are driving diversity in collaborative arrangements. The near future will bring some surprising collaborative successes in the development of new drugs, devices, and diagnostics, but of course, some serious disappointments as well. And the very negative influence of the IP profession on collaborations will not be soon defeated.