Why Are Autism Rates Steadily Rising?
Stefania Sterling was just 21 when she had her son, Charlie. She was young and healthy, with no genetic issues apparent in either her or her husband's family, so she expected Charlie to be typical.
"It is surprising that the prevalence of a significant disorder like autism has risen so consistently over a relatively brief period."
It wasn't until she went to a Mommy and Me music class when he was one, and she saw all the other one-year-olds walking, that she realized how different her son was. He could barely crawl, didn't speak, and made no eye contact. By the time he was three, he was diagnosed as being on the lower functioning end of the autism spectrum.
She isn't sure why it happened – and researchers, too, are still trying to understand the basis of the complex condition. Studies suggest that genes can act together with influences from the environment to affect development in ways that lead to Autism Spectrum Disorder (ASD). But rates of ASD are rising dramatically, making the need to figure out why it's happening all the more urgent.
The Latest News
Indeed, the CDC's latest autism report, released last week, which uses 2016 data, found that the prevalence of ASD in four-year-old children was one in 64 children, or 15.6 affected children per 1,000. That's more than the 14.1 rate they found in 2014, for the 11 states included in the study. New Jersey, as in years past, was the highest, with 25.3 per 1,000, compared to Missouri, which had just 8.8 per 1,000.
The rate for eight-year-olds had risen as well. Researchers found the ASD prevalence nationwide was 18.5 per 1,000, or one in 54, about 10 percent higher than the 16.8 rate found in 2014. New Jersey, again, was the highest, at one in 32 kids, compared to Colorado, which had the lowest rate, at one in 76 kids. For New Jersey, that's a 175 percent rise from the baseline number taken in 2000, when the state had just one in 101 kids.
"It is surprising that the prevalence of a significant disorder like autism has risen so consistently over a relatively brief period," said Walter Zahorodny, an associate professor of pediatrics at Rutgers New Jersey Medical School, who was involved in collecting the data.
The study echoed the findings of a surprising 2011 study in South Korea that found 1 in every 38 students had ASD. That was the the first comprehensive study of autism prevalence using a total population sample: A team of investigators from the U.S., South Korea, and Canada looked at 55,000 children ages 7 to 12 living in a community in South Korea and found that 2.64 percent of them had some level of autism.
Searching for Answers
Scientists can't put their finger on why rates are rising. Some say it's better diagnosis. That is, it's not that more people have autism. It's that we're better at detecting it. Others attribute it to changes in the diagnostic criteria. Specifically, the May 2013 update of the Diagnostic and Statistical Manual of Mental Disorders-5 -- the standard classification of mental disorders -- removed the communication deficit from the autism definition, which made more children fall under that category. Cynical observers believe physicians and therapists are handing out the diagnosis more freely to allow access to services available only to children with autism, but that are also effective for other children.
Alycia Halladay, chief science officer for the Autism Science Foundation in New York, said she wishes there were just one answer, but there's not. While she believes the rising ASD numbers are due in part to factors like better diagnosis and a change in the definition, she does not believe that accounts for the entire rise in prevalence. As for the high numbers in New Jersey, she said the state has always had a higher prevalence of autism compared to other states. It is also one of the few states that does a good job at recording cases of autism in its educational records, meaning that children in New Jersey are more likely to be counted compared to kids in other states.
"Not every state is as good as New Jersey," she said. "That accounts for some of the difference compared to elsewhere, but we don't know if it's all of the difference in prevalence, or most of it, or what."
"What we do know is that vaccinations do not cause autism."
There is simply no defined proven reason for these increases, said Scott Badesch, outgoing president and CEO of the Autism Society of America.
"There are suggestions that it is based on better diagnosis, but there are also suggestions that the incidence of autism is in fact increasing due to reasons that have yet been determined," he said, adding, "What we do know is that vaccinations do not cause autism."
Zahorodny, the pediatrics professor, believes something is going on beyond better detection or evolving definitions.
"Changes in awareness and shifts in how children are identified or diagnosed are relevant, but they only take you so far in accounting for an increase of this magnitude," he said. "We don't know what is driving the surge in autism recorded by the ADDM Network and others."
He suggested that the increase in prevalence could be due to non-genetic environmental triggers or risk factors we do not yet know about, citing possibilities including parental age, prematurity, low birth rate, multiplicity, breech presentation, or C-section delivery. It may not be one, but rather several factors combined, he said.
"Increases in ASD prevalence have affected the whole population, so the triggers or risks must be very widely dispersed across all strata," he added.
There are studies that find new risk factors for ASD almost on a daily basis, said Idan Menashe, assistant professor in the Department of Health at Ben-Gurion University of the Negev, the fastest growing research university in Israel.
"There are plenty of studies that find new genetic variants (and new genes)," he said. In addition, various prenatal and perinatal risk factors are associated with a risk of ASD. He cited a study his university conducted last year on the relationship between C-section births and ASD, which found that exposure to general anesthesia may explain the association.
Whatever the cause, health practitioners are seeing the consequences in real time.
"People say rates are higher because of the changes in the diagnostic criteria," said Dr. Roseann Capanna-Hodge, a psychologist in Ridgefield, CT. "And they say it's easier for children to get identified. I say that's not the truth and that I've been doing this for 30 years, and that even 10 years ago, I did not see the level of autism that I do see today."
Sure, we're better at detecting autism, she added, but the detection improvements have largely occurred at the low- to mid- level part of the spectrum. The higher rates of autism are occurring at the more severe end, in her experience.
A Polarizing Theory
Among the more controversial risk factors scientists are exploring is the role environmental toxins may play in the development of autism. Some scientists, doctors and mental health experts suspect that toxins like heavy metals, pesticides, chemicals, or pollution may interrupt the way genes are expressed or the way endocrine systems function, manifesting in symptoms of autism. But others firmly resist such claims, at least until more evidence comes forth. To date, studies have been mixed and many have been more associative than causative.
"Today, scientists are still trying to figure out whether there are other environmental changes that can explain this rise, but studies of this question didn't provide any conclusive answer," said Menashe, who also serves as the scientific director of the National Autism Research Center at BGU.
"It's not everything that makes Charlie. He's just like any other kid."
That inconclusiveness has not dissuaded some doctors from taking the perspective that toxins do play a role. "Autism rates are rising because there is a mismatch between our genes and our environment," said Julia Getzelman, a pediatrician in San Francisco. "The majority of our evolution didn't include the kinds of toxic hits we are experiencing. The planet has changed drastically in just the last 75 years –- it has become more and more polluted with tens of thousands of unregulated chemicals being used by industry that are having effects on our most vulnerable."
She cites BPA, an industrial chemical that has been used since the 1960s to make certain plastics and resins. A large body of research, she says, has shown its impact on human health and the endocrine system. BPA binds to our own hormone receptors, so it may negatively impact the thyroid and brain. A study in 2015 was the first to identify a link between BPA and some children with autism, but the relationship was associative, not causative. Meanwhile, the Food and Drug Administration maintains that BPA is safe at the current levels occurring in food, based on its ongoing review of the available scientific evidence.
Michael Mooney, President of St. Louis-based Delta Genesis, a non-profit organization that treats children struggling with neurodevelopmental delays like autism, suspects a strong role for epigenetics, which refers to changes in how genes are expressed as a result of environmental influences, lifestyle behaviors, age, or disease states.
He believes some children are genetically predisposed to the disorder, and some unknown influence or combination of influences pushes them over the edge, triggering epigenetic changes that result in symptoms of autism.
For Stefania Sterling, it doesn't really matter how or why she had an autistic child. That's only one part of Charlie.
"It's not everything that makes Charlie," she said. "He's just like any other kid. He comes with happy moments. He comes with sad moments. Just like my other three kids."
Why Aren’t Gene Editing Treatments Available Yet For People With Genetic Disorders? 
Lynn Julian Crisci, 40, is an actress, a singer-songwriter, and an ambassador for the U.S. Pain Foundation. She is also a Boston Marathon bombing survivor. Crisci has a genetic disorder called Ehlers-Danlos syndrome (EDS), which has magnified the impact of the traumatic brain injury she sustained as a result of the attack that occurred almost five years ago. Having EDS means that her brain tissue is weaker and more prone to injury.
"I would love to learn more about gene editing and the possibilities of using it to lessen the symptoms of EDS, or cure it completely."
"EDS is a genetic tissue disorder that forces the body to make defective collagen," Crisci told LeapsMag. Since collagen is the main component of connective tissue (bones, blood vessels, the gastrointestinal tract, skin, cartilage, etc.), and is the most abundant protein in mammals, EDS can affect virtually every part of the body. "This results in widespread joint pain, usually due to hypermobility, sometimes along with digestive issues such as inflammatory bowel disease, and prolapsed organs."
If life was difficult with Ehlers-Danlos syndrome alone, the addition of the brain injury has made Crisci's life feel unbearable at times. Amidst her week's back-to-back doctor's visits, Crisci said that she would "love to learn more about gene editing and the possibilities of using it to lessen the symptoms of Ehlers-Danlos syndrome, or cure it completely."
With all of the excitement these days around CRISPR, a precise and efficient way to edit DNA that has taken the world by storm, such treatments seem tantalizingly within reach. But is it fair to present the hope of such cures to those with life-limiting genetic disorders?
"From the experience that we've had from gene therapy — we're 20, almost 30 years past some of the initial gene therapy stuff — and there's still not a huge number of applications for it," said Scott Weissman, founder of Chicago Genetic Consultants, a company that provides genetic counseling services to patients. "Unfortunately, we have to wait and see if this is something that's truly viable, or if it's really just hype."
"I expect five years from now we'll look back and say, 'Wow, we were just scratching the surface.'"
Defining Our Terms
The terms "gene therapy" and "gene editing" are often used interchangeably, but not everyone agrees with this usage.
According to Editas Medicine, a leader in CRISPR technology, gene therapy involves the transfer of a new gene into a patient's cells to augment a defective gene, instead of using drugs or surgery to treat a condition. After a teenager's death in 1999 effectively shut down gene therapy research in the U.S., subsequent studies helped the field make a comeback, and the first such treatment for an inherited disease was approved by the FDA just a few weeks ago, for a rare form of vision loss. Called Luxturna, it is for treatment of patients with RPE65-mediated inherited retinal disease (IRD).
Since those with RPE65-mediated IRD typically become blind in childhood and have no pharmacologic treatment options, the FDA's approval of Luxturna is "a significant moment for patients," said Jeffrey Marrazzo, the chief executive officer of the company behind the product, Spark Therapeutics. Two other gene therapy treatments were also approved in the last five months, both for specific cancers.
Gene editing, on the other hand, refers to a group of technologies that enables scientists to precisely and directly change an organism's genes by adding, removing, or altering particular segments of DNA. Gene editing tools include Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and CRISPR/Cas9. The first treatment using ZFNs happened in November in California, when a 44-year-old man with a metabolic ailment called Hunter syndrome was injected with gene editing tools. Results are not yet known.
Dr. David Valle, director of the Institute of Genetic Medicine at Johns Hopkins, said that gene therapy's "significant therapeutic misadventures" have actually been beneficial. They've helped us learn to "be rigorous in our thinking about what we can do and what we can't do with CRISPR" and other gene editing tools.
"It appears like we are really beginning to have, for the first time, some meaningful and good results from gene therapy — it's moving into the clinic now in a meaningful way," Valle said. "I expect five years from now we'll look back and say, 'Wow, we were just at this point in 2017 — we were just scratching the surface.'"
Over 2300 gene therapy clinical trials are planned, ongoing, or have been completed so far. As for gene editing, no treatments are commercially available anywhere in the world. The expectation, however, is that many treatments that are "currently in or soon to enter clinical trials will come up for approval in coming years," according to a November 2016 report by the American Society of Gene & Cell Therapy.
CRISPR Therapeutics of Cambridge, Massachusetts will begin a European gene editing trial this year, with the hopes of creating a treatment for beta thalassemia, an inherited blood disorder. The company will also request approval from the FDA to begin a clinical trial using CRISPR for sickle-cell disease. And Stanford University School of Medicine researchers are planning a similar CRISPR clinical trial for sickle-cell disease. They hope to begin their trial in 2019.
Jim Burns, the president and chief executive officer of Casebia Therapeutics, told Leapsmag that the company will start animal research this year using CRISPR to treat autoimmune diseases, hemophilia A, and retinal diseases. They expect to begin clinical research in humans in 2019 or 2020. [Disclosure: Casebia Therapeutics is a novel joint venture between CRISPR Therapeutics and Leapsmag's founder, Leaps by Bayer, though Leapsmag is editorially independent of Bayer.]
Efforts are well underway to take genome-targeted treatments from the scientist's bench to the patient's bedside.
The Technology Isn't There Yet
Unlike germline gene editing — when egg and sperm cell DNA is edited in an embryo — somatic cell gene editing in adults is not very controversial, because the edits are not heritable. Since somatic cells contribute to the various tissues of the body but not to eggs or sperm cells, changes made to somatic cells are limited to the treated individual.
The number one reason that gene therapy and gene editing treatments are not yet widely available to the adult population is that the technology is not advanced enough. But it's getting there. Efforts are well underway to take genome-targeted treatments from the scientist's bench to the patient's bedside — especially in the case of monogenic diseases.
Roughly 10,000 genetic illnesses are monogenic, meaning that they result from a disease-causing variant in a single gene. Some monogenic diseases that have gene editing treatments currently in development for use in clinical trials include cystic fibrosis, Huntington's disease, Tay-Sachs disease, and sickle cell anemia.
Marrazzo of Spark Therapeutics told LeapsMag that his company is working on gene therapies for monogenic diseases that affect the eye, like the retinal disease that Luxturna targets, as well as neurodegenerative and liver diseases.
But most illnesses are polygenic, meaning that they result from multiple gene mutations that have a combined influence on disease progression. Polygenic diseases, like high blood pressure and diabetes, would therefore be more challenging to treat with genome-targeted interventions. As a result, most research is currently focused on monogenic diseases.
"We don't really know how to target the gene editing to a specific organ in the body once it's fully developed and matured."
A major hurdle of gene editing is the risk of off-target effects. Editing the genome "can have unpredictable effects on gene expression and unintended effects on neighboring genes," wrote Morgan Maeder and Charles Gersbach in a March 2016 article in Molecular Therapy. One such unintended effect is the development of leukemia when a new gene unintentionally activates a cancer gene.
And since there are roughly 37 trillion cells in the adult human body, getting the gene editing machinery to enough cells or target tissues to create a lasting and significant change is a daunting task.
"We don't really know how to target the gene editing to a specific organ in the body once it's fully developed and matured," said Weissman, the genetic counseling expert. If you take an adult patient with known BRCA1 or BRCA2 mutations, for example, how do you then "get the [gene editing] system in the breast so that it accurately cuts out the mutation in every single breast cell that could potentially turn into breast cancer, or in every single ovarian cell that could turn into ovarian cancer? We don't know how to target it like that, and I think that's the biggest reason you're not seeing it more somatically at this point in time."
Approval and Access
Debra Mathews, assistant director for science programs for the Johns Hopkins Berman Institute of Bioethics, told LeapsMag that pre-existing regulatory frameworks surrounding gene therapy have been sufficient for addressing ethical and regulatory concerns surrounding gene editing. A bigger concern, she said, centers around access to future genome-targeted treatments.
"We know more about the genetics of Caucasian populations than other populations," Mathews explained, due to how genomic data is gathered. This "could lead to problems not just of financial but of biological access to new therapies." In other words, she said, "if you're of European ancestry, there may be a greater chance that there's a relevant genetically-targeted therapy for you than if you're of non-European ancestry."
Ensuring that genome-targeted treatments are accessible to all will require increased cooperation and data-sharing among key stakeholders around the world, as well as increased public engagement that is inclusive of a wide range of voices.
"It's important to be realistic in our predictions to the public."
The Coming Wave of Gene Editing Treatments
Ehlers-Danlos syndrome alone has 13 monogenic subtypes, each with its own genetic basis and set of clinical criteria. Though several of the gene mutations causing EDS subtypes have been identified, the genetic basis for the most common subtype that Lynn Julian Crisci has — hypermobile EDS — remains unknown. What this means, according to Valle, the doctor from Johns Hopkins, is that a gene therapy or gene editing approach "really cannot be contemplated because we don't know what we're trying to fix" yet. This is the case for many genetic illnesses.
Efforts are ongoing in gene discovery by organizations such as the Baylor-Hopkins Center for Mendelian Genomics, of which Valle is the principal investigator. "Our objective," he said, "is to identify the genes and variants responsible" in monogenic disorders.
While Valle is optimistic about the coming wave of commercially available gene therapy and gene editing treatments, he also thinks that "it's important to be realistic in our predictions to the public." As eager as physicians are to offer cures to their patients, "we have to make sure that we're rigorous in our thinking and our ideas are well-buttressed with results."
Estimates vary for how long Crisci and others with genetic illnesses will have to wait for genome-targeted treatment options. Depending on the illness, viable gene editing treatments could hit the market within the next ten years. Though patients have already waited a long while, the revolutionary technology allowing us to fix nature's mistakes could make up for lost time and lost hope.
A Drug Straight Out of Science Fiction Has Arrived
Steve, a 60-year-old resident of the DC area who works in manufacturing, was always physically fit. In college, he played lacrosse in Division I, the highest level of intercollegiate athletics in the United States. Later, he stayed active by swimming, biking, and running--up until something strange happened around two years ago.
"It was hard for me to even get upstairs. I wasted away."
Steve, who requested that his last name be withheld to protect his privacy, started to notice weakness first in his toes, then his knees. On a trip to the zoo, he had trouble keeping up. Then some months later, the same thing happened on a family hike. What was supposed to be a four-mile trek up to see a waterfall ended for him at the quarter-mile mark. He turned around and struggled back to the start just as everyone else was returning from the excursion.
Alarmed, he sought out one doctor after the next, but none could diagnose him. The disabling weakness continued to creep up his legs, and by the time he got in to see a top neurologist at Johns Hopkins University last January, he was desperate for help.
"It was hard for me to even get upstairs," he recalls. "I wasted away and had lost about forty-five pounds."
The neurologist, Dr. Michael Polydefkis, finally made the correct diagnosis based on Steve's rapid progression of symptoms, a skin and nerve biopsy, and a genetic test. It turned out that Steve had a rare inherited disease called hereditary transthyretin amyloidosis. Transthyretin is a common blood protein whose normal function is to transport vitamins and hormones in the body. When patients possess certain genetic mutations in the transthyretin gene, the resulting protein can misfold, clump and produce amyloid, an aggregate of proteins, which then interferes with normal function. Many organs are affected in this disease, but most affected are the nervous system, the GI tract, and the heart.
Dr. Michael Polydefkis, Steve's neurologist at Johns Hopkins Bayview Medical Center in Baltimore, MD.
(Courtesy of Dr. Polydefkis)
For the 50,000 patients like Steve around the world, the only treatment historically has been a liver transplant—a major, risky operation. The liver makes most of the transthyretin in a person's body. So if a person who carries a genetic mutation for a disease-causing form of transthyretin has their liver transplanted, the new liver will stop making the mutant protein. A few drugs can slow, but do not stop the disease.
Since it is a genetic condition, a regular "drug" can't tackle the problem.
"For almost all of medicine from the 18th century to today, drugs have been small molecules, typically natural, some invented by humans, that bind to proteins and block their functions," explains Dr. Phillip Zamore, chair of the department of Biomedical Sciences at the University of Massachusetts Medical School. "But with most proteins (including this one), you can't imagine how that would ever happen. Because even if it stuck, there's no reason to think it would change anything. So people threw up their hands and said, 'Unless we can find a protein that is "druggable" in disease X, we can't treat it.'"
To draw a car analogy, treating a disease like Steve's with a small molecule would be like trying to shut down the entire car industry when all you can do is cut the power cord to one machine in one local factory. With few options, patients like Steve have been at a loss, facing continual deterioration and disability.
"It's more obvious how to be specific because we use the genetic code itself to design the drug."
A Radical New Approach
Luckily, Dr. Polydefkis knew of an experimental drug made by a biotech company that Dr. Zamore co-founded called Alnylam Pharmaceuticals. They were doing something completely different: silencing the chemical blueprint for protein, called RNA, rather than targeting the protein itself. In other words, shutting down all the bad factories across the whole car industry at once – without touching the good ones.
"It's more obvious how to be specific," says Dr. Zamore, "because we use the genetic code itself to design the drug."
For Steve's doctor, the new drug, called patisiran, is a game changer.
"It's the dawn of molecular medicine," says Dr. Polydefkis. "It's really a miraculous development. The ability to selectively knock down or reduce the amount of a specific protein is remarkable. I tell patients this is science fiction that is now becoming reality."
A (Very) Short History
The strategy of silencing RNA as a method of guiding drug development began in 1998. Basic research took six years before clinical testing in humans began in 2004. Just a few months ago, in November, the results of the first double-blind, placebo-controlled phase III trials were announced, testing patisiran in patients--and they surpassed expectations.
"The results were remarkably positive," says Dr. Polydefkis. "Every primary and secondary outcome measure target was met. It's the most positive trial I have ever been associated with and that I can remember in recent memory."
FDA approval is expected to come by summer, which will mark the first official sanction of a drug based on RNA inhibition (RNAi). Experts are confident that similar drugs will eventually follow for other diseases, like familial hypercholesterol, lipid disorders, and breathing disorders. Right now, these drugs must get into the liver to work, but otherwise the future treatment possibilities are wide open, according to Dr. Zamore.
"It doesn't have to be a genetic disease," he says. "In theory, it doesn't have to be just one gene, although I don't think anyone knows how many you could target at once. There is no precedent for targeting two."
Dr. Phillip Zamore, chair of the RNA Therapeutics Institute at the University of Massachusetts Medical School.
(Courtesy of Dr. Zamore)
Alnylam, the leading company in RNAi therapeutics, plans to strategically design other new drugs based on what they have learned from this first trial – "so with each successive experience, with designing and testing, you get better at making more drugs. In a way, that's never happened before...This is a lot more efficient of a way to make drugs in the future."
And unlike gene therapy, in which a patient's own genetic code is permanently altered, this approach does not cause permanent genetic changes. Patients can stop taking it like any other drug, and its effects will vanish.
How Is Steve?
Last February, Steve started on the drug. He was granted early access since it is not yet FDA-approved and is still considered experimental. Every 21 days, he has received an IV infusion that causes some minor side effects, like headaches and facial flushing.
"The good news is, since I started on the drug, I don't see any more deterioration other than my speech."
So far, it seems to be effective. He's gained back 20 pounds, and though his enunciation is still a bit slurred, he says that his neuropathy has stopped. He plans to continue the treatment for the rest of his life.
"The good news is, since I started on the drug, I don't see any more deterioration other than my speech," he says. "I think the drug is working, but would I have continued to deteriorate without the drug? I'm not really sure."
Dr. Polydefkis jumps in with a more confident response: "If you ask me, I would say 100 percent he would have kept progressing at a fairly rapid pace without the drug. When Steve says the neuropathy has stopped, that's music to my ears."
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.