3 Things Microbes in Space Can Teach Us About Our Health on Earth
We all know the typical astronaut accessories—the EVA suit, the oxygen tanks, the radio assembly. But there's an invisible part of each space mission that's often overlooked: the trillions of microorganisms that hitch a ride.
Observing responses of pathogens in space could help scientists figure out how to outsmart them when they cause trouble on Earth.
Dr. Sarah Wallace is a NASA microbiologist who aims to keep microbes from causing problems for U.S. astronauts aboard the International Space Station. According to Wallace, research on microorganisms in space has more than cosmic importance. It can also reveal things about our health here on Earth:
1) Avoiding disease isn't all about maintaining a sterile environment.
NASA has a great track record of keeping the crew healthy on space missions. But surprisingly, it's not from having kept the space flight environment as sterile as possible.
Wallace says, "We [monitor] the environment but unless we find something that's medically significant, or [in] super high numbers, we're not going to do anything."
Not only is it impossible for astronauts to live in completely sterile quarters—crew members, after all, are microbe-shedding machines—but it may not even be desirable, given what we now know about the human microbiome. Scientists have found that the entire community of microorganisms (bacteria, archaea, fungi, and viruses) living in and on us likely have an active role in keeping us healthy. This means that down on the ground we need to let go of the germophobe idea that eradicating all microbes is always better for our health.
2) Disease-causing microbes change their behavior under different conditions.
Remember the recent E. coli O157:H7 outbreak linked to romaine lettuce? We're still grappling with a lot of pathogen problems here on Earth. One reason is that scientists are still learning which strategies these disease-causing microorganisms are capable of employing under different conditions.
Space missions are associated with a major shift in gut microbiome composition—as shown in NASA's twin study.
Wallace says experiments with Salmonella Typhimurium showed that the pathogen became more virulent in space. Yet curiously, the opposite seemed to happen to Staphylococcus aureus under space-flight-like conditions—it became more benign.
"The way these organisms have evolved, certain triggers [in the space flight environment] might be dictating how they're responding," Wallace says.
Observing these responses could help scientists figure out how to outsmart the pathogen when it causes trouble on Earth. "It's giving us some great insights into how we could target them differently in the future," she explains.
3) Major shifts in the gut microbiome could affect health in specific ways.
Scientists still have a lot to learn about which changes in an adult's gut microbiome actually cause a change in health status. In fact, microbiome-focused therapeutics companies are in hot pursuit of these connections.
Space missions are associated with a major shift in gut microbiome composition—as shown in NASA's twin study, which followed astronaut Scott Kelly during a year aboard the ISS while his identical twin brother Mark (a retired astronaut) stayed on the ground. Scott experienced simultaneous changes in telomere length and bone formation; were these related to the gut microbial differences?
Wallace says a soon-to-be-published study of nine additional astronauts could help answer this question. The research may reveal how closely gut microbiome shifts track health outcomes, and the reversibility of the changes.
She emphasizes the science from her lab isn't meant to help only the small minority of humans who will ever go to space: "That's always our goal—that our research is helping people on Earth."
A sleek, four-foot tall white robot glides across a cafe storefront in Tokyo’s Nihonbashi district, holding a two-tiered serving tray full of tea sandwiches and pastries. The cafe’s patrons smile and say thanks as they take the tray—but it’s not the robot they’re thanking. Instead, the patrons are talking to the person controlling the robot—a restaurant employee who operates the avatar from the comfort of their home.
It’s a typical scene at DAWN, short for Diverse Avatar Working Network—a cafe that launched in Tokyo six years ago as an experimental pop-up and quickly became an overnight success. Today, the cafe is a permanent fixture in Nihonbashi, staffing roughly 60 remote workers who control the robots remotely and communicate to customers via a built-in microphone.
More than just a creative idea, however, DAWN is being hailed as a life-changing opportunity. The workers who control the robots remotely (known as “pilots”) all have disabilities that limit their ability to move around freely and travel outside their homes. Worldwide, an estimated 16 percent of the global population lives with a significant disability—and according to the World Health Organization, these disabilities give rise to other problems, such as exclusion from education, unemployment, and poverty.
These are all problems that Kentaro Yoshifuji, founder and CEO of Ory Laboratory, which supplies the robot servers at DAWN, is looking to correct. Yoshifuji, who was bedridden for several years in high school due to an undisclosed health problem, launched the company to help enable people who are house-bound or bedridden to more fully participate in society, as well as end the loneliness, isolation, and feelings of worthlessness that can sometimes go hand-in-hand with being disabled.
“It’s heartbreaking to think that [people with disabilities] feel they are a burden to society, or that they fear their families suffer by caring for them,” said Yoshifuji in an interview in 2020. “We are dedicating ourselves to providing workable, technology-based solutions. That is our purpose.”
Shota Kuwahara, a DAWN employee with muscular dystrophy. Ory Labs, Inc.
Wanting to connect with others and feel useful is a common sentiment that’s shared by the workers at DAWN. Marianne, a mother of two who lives near Mt. Fuji, Japan, is functionally disabled due to chronic pain and fatigue. Working at DAWN has allowed Marianne to provide for her family as well as help alleviate her loneliness and grief.Shota, Kuwahara, a DAWN employee with muscular dystrophy, agrees. "There are many difficulties in my daily life, but I believe my life has a purpose and is not being wasted," he says. "Being useful, able to help other people, even feeling needed by others, is so motivational."
When a patient is diagnosed with early-stage breast cancer, having surgery to remove the tumor is considered the standard of care. But what happens when a patient can’t have surgery?
Whether it’s due to high blood pressure, advanced age, heart issues, or other reasons, some breast cancer patients don’t qualify for a lumpectomy—one of the most common treatment options for early-stage breast cancer. A lumpectomy surgically removes the tumor while keeping the patient’s breast intact, while a mastectomy removes the entire breast and nearby lymph nodes.
Fortunately, a new technique called cryoablation is now available for breast cancer patients who either aren’t candidates for surgery or don’t feel comfortable undergoing a surgical procedure. With cryoablation, doctors use an ultrasound or CT scan to locate any tumors inside the patient’s breast. They then insert small, needle-like probes into the patient's breast which create an “ice ball” that surrounds the tumor and kills the cancer cells.
Cryoablation has been used for decades to treat cancers of the kidneys and liver—but only in the past few years have doctors been able to use the procedure to treat breast cancer patients. And while clinical trials have shown that cryoablation works for tumors smaller than 1.5 centimeters, a recent clinical trial at Memorial Sloan Kettering Cancer Center in New York has shown that it can work for larger tumors, too.
In this study, doctors performed cryoablation on patients whose tumors were, on average, 2.5 centimeters. The cryoablation procedure lasted for about 30 minutes, and patients were able to go home on the same day following treatment. Doctors then followed up with the patients after 16 months. In the follow-up, doctors found the recurrence rate for tumors after using cryoablation was only 10 percent.
For patients who don’t qualify for surgery, radiation and hormonal therapy is typically used to treat tumors. However, said Yolanda Brice, M.D., an interventional radiologist at Memorial Sloan Kettering Cancer Center, “when treated with only radiation and hormonal therapy, the tumors will eventually return.” Cryotherapy, Brice said, could be a more effective way to treat cancer for patients who can’t have surgery.
“The fact that we only saw a 10 percent recurrence rate in our study is incredibly promising,” she said.