A Fierce Mother vs. a Fatal Mutation
Editor's Note: In the year 2000, Amber Salzman was a 39-year-old mom from Philadelphia living a normal life: working as a pharmaceutical executive, raising an infant son, and enjoying time with her family. But when tragedy struck in the form of a ticking time bomb in her son's DNA, she sprang into action. Her staggering triumphs after years of turmoil exemplify how parents today can play a crucial role in pushing science forward. This is her family's story, as told to LeapsMag's Editor-in-Chief Kira Peikoff.
For a few years, my nephew Oliver, suffered from symptoms that first appeared as attention deficit disorder and then progressed to what seemed like Asperger's, and he continued to worsen and lose abilities he once had. After repeated misdiagnoses, he was finally diagnosed at age 8 with adrenoleukodystrophy, or ALD – a degenerative brain disease that puts kids on the path toward death. We learned it was an X-linked disease, so we had to test other family members. Because Oliver had it, that meant his mother, my sister, was carrier, which meant I had a 50-50 chance of being a carrier, and if I was, then my son had a 50-50 chance of getting the bad gene.
You know how some people win prizes all the time? I don't have that kind of luck. I had a sick feeling when we drew my son's blood. It was almost late December in the year 2000. Spencer was 1 and climbing around like a monkey, starting to talk—a very rambunctious kid. He tested positive, along with Oliver's younger brother, Elliott.
"The only treatment at the time was an allogenic stem cell transplant from cord blood or bone marrow."
You can imagine the dreadful things that go through your mind. Everything was fine then, but he had a horrific chance that in about 3 or 4 years, a bomb would go off. It was so tough thinking that we were going to lose Oliver, and then Spencer and Elliott were next in line. The only treatment at the time was an allogenic stem cell transplant from cord blood or bone marrow, which required finding a perfect match in a donor and then undergoing months of excruciating treatment. The mortality rate can be as high as 40 percent. If your kid was lucky enough to find a donor, he would then be lucky to leave the hospital 100 days after a transplant with a highly fragile immune system.
At the time, I was at GlaxoSmithKline in Research and Development, so I did have a background in working with drug development and I was fortunate to report to the chairman of R&D, Tachi Yamada.
I called Tachi and said, "I need your advice, I have three or four years to find a cure. What do I do?" He did some research and said it's a monogenic disease—meaning it's caused by only one errant gene—so my best bet was gene therapy. This is an approach to treatment that involves taking a sample of the patient's own stem cells, treating them outside the body with a viral vector as a kind of Trojan Horse to deliver the corrected gene, and then infusing the solution back into the patient, in the hopes that the good gene will proliferate throughout the body and stop the disease in its tracks.
Tachi said to call his friend Jim Wilson, who was a leader in the field at UPenn.
Since I live in Philadelphia I drove to see Jim as soon as possible. What I didn't realize was how difficult a time it was. This was shortly after Jesse Gelsinger died in a clinical trial for gene therapy run by UPenn—the first death for the field—and research had abruptly stopped. But when I met with Jim, he provided a road map for what it would take to put together a gene therapy trial for ALD.
Meanwhile, in parallel, I was dealing with my son's health.
After he was diagnosed, we arranged a brain MRI to see if he had any early lesions, because the only way you can stop the disease is if you provide a bone marrow transplant before the disease evolves. Once it is in full force, you can't reverse it, like a locomotive that's gone wild.
"He didn't recover like other kids because his brain was not a normal brain; it was an ALD brain."
We found he had a brain tumor that had nothing to do with ALD. It was slow growing, and we would have never found it otherwise until it was much bigger and caused symptoms. Long story short, he ended up getting the tumor removed, and when he was healing, he didn't recover like other kids because his brain was not a normal brain; it was an ALD brain. We knew we needed a transplant soon, and the gene therapy trial was unfortunately still years away.
At the time, he was my only child, and I was thinking of having additional kids. But I didn't want to get pregnant with another ALD kid and I wanted a kid who could provide a bone marrow transplant for my son. So while my son was still OK, I went through 5 cycles of in vitro fertilization, a process in which hormone shots stimulated my ovaries to produce multiple eggs, which were then surgically extracted and fertilized in a lab with my husband's sperm. After the embryos grew in a dish for three to five days, doctors used a technique called preimplantation genetic diagnosis, screening those embryos to determine which genes they carry, in order to try to find a match for Spencer. Any embryo that had ALD, we saved for research. Any that did not have ALD but were not a match for Spencer, we put in the freezer. We didn't end up with a single one that was a match.
So he had a transplant at Duke Children's Hospital at age 2, using cord blood donated from a public bank. He had to be in the hospital a long time, infusing meds multiple times a day to prevent the donor cells from rejecting his body. We were all excited when he made it out after 100 days, but then we quickly had to go back for an infection he caught.
We were still bent on moving forward with the gene therapy trials.
Jim Wilson at Penn explained what proof of concept we needed in animals to go forward to humans, and a neurologist in Paris, Patrick Aubourg, had already done that using a vector to treat ALD mice. But he wasn't sure which vector to use in humans.
The next step was to get Patrick and a team of gene therapy experts together to talk about what they knew, and what needed to be done to get a trial started. There was a lot of talk about viral vectors. Because viruses efficiently transport their own genomes into the cells they infect, they can be useful tools for sending good genes into faulty cells. With some sophisticated tinkering, molecular biologists can neuter normally dangerous viruses to make them into delivery trucks, nothing more. The biggest challenge we faced then was: How do we get a viral vector that would be safe in humans?
Jim introduced us to Inder Verma, chair of the scientific advisory board of Cell Genesys, a gene therapy company in California that was focused on oncology. They were the closest to making a viral vector that could go into humans, based on a disabled form of HIV. When I spoke to Inder, he said, "Let's review the data, but you will need to convince the company to give you the vector." So I called the CEO and basically asked him, "Would you be willing to use the vector in this horrific disease?" I told him that our trial would be the fastest way to test their vector in humans. He said, "If you can convince my scientists this is ready to go, we will put the vector forward." Mind you, this was a multi-million-dollar commitment, pro bono.
I kept thinking every day, the clock is ticking, we've got to move quickly. But we convinced the scientists and got the vector.
Then, before we could test it, an unrelated clinical trial in gene therapy for a severe immunodeficiency disease, led to several of the kids developing leukemia in 2003. The press did a bad number and scared everyone away from the field, and the FDA put studies on hold in the U.S. That was one of those moments where I thought it was over. But we couldn't let it stop. Nothing's an obstacle, just a little bump we have to overcome.
Patrick wanted to do the study in France with the vector. This is where patient advocacy is important in providing perspective on the risks vs. benefits of undergoing an experimental treatment. What nobody seemed to realize was that the kids in the 2003 trial would have died if they were not first given the gene therapy, and luckily their leukemia was a treatable side effect.
Patrick and I refused to give up pushing for approval of the trial in France. Meanwhile, I was still at GSK, working full time, and doing this at night, nonstop. Because my day job did require travel to Europe, I would stop by Paris and meet with him. Another sister of mine who did not have any affected children was a key help and we kept everything going. You really need to continually stay engaged and press the agenda forward, since there are so many things that pop up that can derail the program.
Finally, Patrick was able to treat four boys with the donated vector. The science paper came out in 2009. It was a big deal. That's when the venture money came in—Third Rock Ventures was the first firm to put big money behind gene therapy. They did a deal with Patrick to get access to the Intellectual Property to advance the trial, brought on scientists to continue the study, and made some improvements to the vector. That's what led to the new study reported recently in the New England Journal of Medicine. Of 17 patients, 15 of them are still fine at least two years after treatment.
You know how I said we felt thrilled that my son could leave the hospital after 100 days? When doing the gene therapy treatment, the hospital stay needed is much quicker. Shortly after one kid was treated, a physician in the hospital remarked, "He is fine, he's only here because of the trial." Since you get your own cells, there is no risk of graft vs. host disease. The treatment is pretty anticlimactic: a bag of blood, intravenously infused. You can bounce back within a few weeks.
Now, a few years out, approximately 20 percent of patients' cells have been corrected—and that's enough to hold off the disease. That's what the data is showing. I was blown away when it worked in the first two patients.
The formerly struggling field is now making a dramatic comeback.
Just last month, the first two treatments involving gene therapy were approved by the FDA to treat a devastating type of leukemia in children and an aggressive blood cancer in adults.
Now I run a company, Adverum Biotechnologies, that I wish existed back when my son was diagnosed, because I want people who are like me, coming to me, saying: "I have proof of concept in an animal, I need to get a vector suitable for human trials, do the work needed to file with the FDA, and move it into humans." Our company knows how to do that and would like to work with such patient advocates.
Often parents feel daunted to partake in similar efforts, telling me, "Well, you worked in pharma." Yes, I had advantages, but if you don't take no for an answer, people will help you. Everybody is one degree of separation from people who can help them. You don't need a science or business background. Just be motivated, ask for help, and have your heart in the right place.
Having said that, I don't want to sound judgmental of families who are completely paralyzed. When you get a diagnosis that your child is dying, it is hard to get out of bed in the morning and face life. My sister at a certain point had one child dying, one in the hospital getting a transplant, and a healthy younger child. To expect someone like that to at the same time be flying to an FDA meeting, it's hard. Yet, she made critical meetings, and she and her husband graciously made themselves available to talk to parents of recently diagnosed boys. But it is really tough and my heart goes out to anyone who has to live through such devastation.
Tragically, my nephew Oliver passed away 13 years ago at age 12. My other nephew was 8 when he had a cord blood transplant; our trial wasn't available yet. He had some bad graft vs. host disease and he is now navigating life using a wheelchair, but thank goodness, it stopped the disease. He graduated Stanford a year ago and is now a sports writer for the Houston Chronicle.
As for my son, today he is 17, a precocious teenager applying to colleges. He also volunteers for an organization called the Friendship Circle, providing friends for kids with special needs. He doesn't focus on disability and accepts people for who they are – maybe he would have been like that anyway, but it's part of who he is. He lost his cousin and knows he is alive today because Oliver's diagnosis gave us a head start on his.
My son's story is a good one in that he had a successful transplant and recovered.
Once we knew he would make it and we no longer needed our next child to be a match, we had a daughter using one of our healthy IVF embryos in storage. She is 14 now, but she jokes that she is technically 17, so she should get to drive. I tell her, they don't count the years in the freezer. You have to joke about it.
I am so lucky to have two healthy kids today based on advances in science.
And I often think of Oliver. We always try to make him proud and honor his name.
[Editor's Note: This story was originally published in November 2017. We are resurfacing archive hits while our staff is on vacation.]
Salzman and her son Spencer, 17, who is now healthy.
(Courtesy of Salzman)
How sharing, hearing, and remembering positive stories can help shape our brains for the better
Across cultures and through millennia, human beings have always told stories. Whether it’s a group of boy scouts around a campfire sharing ghost stories or the paleolithic Cro-Magnons etching pictures of bison on cave walls, researchers believe that storytelling has been universal to human beings since the development of language.
But storytelling was more than just a way for our ancestors to pass the time. Researchers believe that storytelling served an important evolutionary purpose, helping humans learn empathy, share important information (such as where predators were or what berries were safe to eat), as well as strengthen social bonds. Quite literally, storytelling has made it possible for the human race to survive.
Today, neuroscientists are discovering that storytelling is just as important now as it was millions of years ago. Particularly in sharing positive stories, humans can more easily form relational bonds, develop a more flexible perspective, and actually grow new brain circuitry that helps us survive. Here’s how.
How sharing stories positively impacts the brain
When human beings share stories, it increases the levels of certain neurochemicals in the brain, neuroscientists have found. In a 2021 study published in Proceedings of the National Academy of Sciences (PNAS), Swedish researchers found that simply hearing a story could make hospitalized children feel better, compared to other hospitalized children who played a riddle game for the same amount of time. In their research, children in the intensive care unit who heard stories for just 30 minutes had higher levels of oxytocin, a hormone that promotes positive feelings and is linked to relaxation, trust, social connectedness, and overall psychological stability. Furthermore, the same children showed lower levels of cortisol, a hormone associated with stress. Afterward, the group of children who heard stories tended to describe their hospital experiences more positively, and even reported lower levels of pain.
Annie Brewster, MD, knows the positive effect of storytelling from personal experience. An assistant professor at Harvard Medical School and the author of The Healing Power of Storytelling: Using Personal Narrative to Navigate Illness, Trauma, and Loss, Brewster started sharing her personal experience with chronic illness after being diagnosed with multiple sclerosis in 2001. In doing so, Brewster says it has enabled her to accept her diagnosis and integrate it into her identity. Brewster believes so much in the power of hearing and sharing stories that in 2013 she founded Health Story Collaborative, a forum for others to share their mental and physical health challenges.“I wanted to hear stories of people who had found ways to move forward in positive ways, in spite of health challenges,” Brewster said. In doing so, Brewster believes people with chronic conditions can “move closer to self-acceptance and self-love.”
While hearing and sharing positive stories has been shown to increase oxytocin and other “feel good” chemicals, simply remembering a positive story has an effect on our brains as well. Mark Hoelterhoff, PhD, a lecturer in clinical psychology at the University of Edinburgh, recalling and “savoring” a positive story, thought, or feedback “begins to create new brain circuitry—a new neural network that’s geared toward looking for the positive,” he says. Over time, other research shows, savoring positive stories or thoughts can literally change the shape of your brain, hard-wiring someone to see things in a more positive light.How stories can change your behavior
In 2009, Paul Zak, PhD, a neuroscientist and professor at Claremont Graduate University, set out to measure how storytelling can actually change human behavior for the better. In his study, Zak wanted to measure the behavioral effects of oxytocin, and did this by showing test subjects two short video clips designed to elicit an emotional response.
In the first video they showed the study participants, a father spoke to the camera about his two-year-old son, Ben, who had been diagnosed with terminal brain cancer. The father told the audience that he struggled to connect with and enjoy Ben, as Ben had only a few months left to live. In the end, the father finds the strength to stay emotionally connected to his son until he dies.
The second video clip, however, was much less emotional. In that clip, the same father and son are shown spending the day at the zoo. Ben is only suggested to have cancer (he is bald from chemotherapy and referred to as a ‘miracle’, but the cancer isn’t mentioned directly). The second story lacked the dramatic narrative arc of the first video.
Zak’s team took blood before and after the participants watched one of the two videos and found that the first story increased the viewers’ cortisol and oxytocin, suggesting that they felt distress over the boy’s diagnosis and empathy toward the boy and his father. The second narrative, however, didn’t increase oxytocin or cortisol at all.
But Zak took the experiment a step further. After the movie clips, his team gave the study participants a chance to share money with a stranger in the lab. The participants who had an increase in cortisol and oxytocin were more likely to donate money generously. The participants who had increased cortisol and oxytocin were also more likely to donate money to a charity that works with children who are ill. Zak also found that the amount of oxytocin that was released was correlated with how much money people felt comfortable giving—in other words, the more oxytocin that was released, the more generous they felt, and the more money they donated.
How storytelling strengthens our bond with others
Sharing, hearing, and remembering stories can be a powerful tool for social change–not only in the way it changes our brain and our behavior, but also because it can positively affect our relationships with other people
Emotional stimulation from telling stories, writes Zak, is the foundation for empathy, and empathy strengthens our relationships with other people. “By knowing someone’s story—where they come from, what they do, and who you might know in common—relationships with strangers are formed.”
But why are these relationships important for humanity? Because human beings can use storytelling to build empathy and form relationships, it enables them to “engage in the kinds of large-scale cooperation that builds massive bridges and sends humans into space,” says Zak.
Storytelling, Zak found, and the oxytocin release that follows, also makes people more sensitive to social cues. This sensitivity not only motivates us to form relationships, but also to engage with other people and offer help, particularly if the other person seems to need help.
But as Zak found in his experiments, the type of storytelling matters when it comes to affecting relationships. Where Zak found that storytelling with a dramatic arc helps release oxytocin and cortisol, enabling people to feel more empathic and generous, other researchers have found that sharing happy stories allows for greater closeness between individuals and speakers. A group of Chinese researchers found that, compared to emotionally-neutral stories, happy stories were more “emotionally contagious.” Test subjects who heard happy stories had greater activation in certain areas of their brains, experienced more significant, positive changes in their mood, and felt a greater sense of closeness between themselves and the speaker.
“This finding suggests that when individuals are happy, they become less self-focused and then feel more intimate with others,” the authors of the study wrote. “Therefore, sharing happiness could strengthen interpersonal bonding.” The researchers went on to say that this could lead to developing better social networks, receiving more social support, and leading more successful social lives.
Since the start of the COVID pandemic, social isolation, loneliness, and resulting mental health issues have only gotten worse. In light of this, it’s safe to say that hearing, sharing, and remembering stories isn’t just something we can do for entertainment. Storytelling has always been central to the human experience, and now more than ever it’s become something crucial for our survival.
Want to know how you can reap the benefits of hearing happy stories? Keep an eye out for Upworthy’s first book, GOOD PEOPLE: Stories from the Best of Humanity, published by National Geographic/Disney, available on September 3, 2024. GOOD PEOPLE is a much-needed trove of life-affirming stories told straight from the heart. Handpicked from Upworthy’s community, these 101 stories speak to the breadth, depth, and beauty of the human experience, reminding us we have a lot more in common than we realize.
A new type of cancer therapy is shrinking deadly brain tumors with just one treatment
Few cancers are deadlier than glioblastomas—aggressive and lethal tumors that originate in the brain or spinal cord. Five years after diagnosis, less than five percent of glioblastoma patients are still alive—and more often, glioblastoma patients live just 14 months on average after receiving a diagnosis.
But an ongoing clinical trial at Mass General Cancer Center is giving new hope to glioblastoma patients and their families. The trial, called INCIPIENT, is meant to evaluate the effects of a special type of immune cell, called CAR-T cells, on patients with recurrent glioblastoma.
How CAR-T cell therapy works
CAR-T cell therapy is a type of cancer treatment called immunotherapy, where doctors modify a patient’s own immune system specifically to find and destroy cancer cells. In CAR-T cell therapy, doctors extract the patient’s T-cells, which are immune system cells that help fight off disease—particularly cancer. These T-cells are harvested from the patient and then genetically modified in a lab to produce proteins on their surface called chimeric antigen receptors (thus becoming CAR-T cells), which makes them able to bind to a specific protein on the patient’s cancer cells. Once modified, these CAR-T cells are grown in the lab for several weeks so that they can multiply into an army of millions. When enough cells have been grown, these super-charged T-cells are infused back into the patient where they can then seek out cancer cells, bind to them, and destroy them. CAR-T cell therapies have been approved by the US Food and Drug Administration (FDA) to treat certain types of lymphomas and leukemias, as well as multiple myeloma, but haven’t been approved to treat glioblastomas—yet.
CAR-T cell therapies don’t always work against solid tumors, such as glioblastomas. Because solid tumors contain different kinds of cancer cells, some cells can evade the immune system’s detection even after CAR-T cell therapy, according to a press release from Massachusetts General Hospital. For the INCIPIENT trial, researchers modified the CAR-T cells even further in hopes of making them more effective against solid tumors. These second-generation CAR-T cells (called CARv3-TEAM-E T cells) contain special antibodies that attack EFGR, a protein expressed in the majority of glioblastoma tumors. Unlike other CAR-T cell therapies, these particular CAR-T cells were designed to be directly injected into the patient’s brain.
The INCIPIENT trial results
The INCIPIENT trial involved three patients who were enrolled in the study between March and July 2023. All three patients—a 72-year-old man, a 74-year-old man, and a 57-year-old woman—were treated with chemo and radiation and enrolled in the trial with CAR-T cells after their glioblastoma tumors came back.
The results, which were published earlier this year in the New England Journal of Medicine (NEJM), were called “rapid” and “dramatic” by doctors involved in the trial. After just a single infusion of the CAR-T cells, each patient experienced a significant reduction in their tumor sizes. Just two days after receiving the infusion, the glioblastoma tumor of the 72-year-old man decreased by nearly twenty percent. Just two months later the tumor had shrunk by an astonishing 60 percent, and the change was maintained for more than six months. The most dramatic result was in the 57-year-old female patient, whose tumor shrank nearly completely after just one infusion of the CAR-T cells.
The results of the INCIPIENT trial were unexpected and astonishing—but unfortunately, they were also temporary. For all three patients, the tumors eventually began to grow back regardless of the CAR-T cell infusions. According to the press release from MGH, the medical team is now considering treating each patient with multiple infusions or prefacing each treatment with chemotherapy to prolong the response.
While there is still “more to do,” says co-author of the study neuro-oncologist Dr. Elizabeth Gerstner, the results are still promising. If nothing else, these second-generation CAR-T cell infusions may someday be able to give patients more time than traditional treatments would allow.
“These results are exciting but they are also just the beginning,” says Dr. Marcela Maus, a doctor and professor of medicine at Mass General who was involved in the clinical trial. “They tell us that we are on the right track in pursuing a therapy that has the potential to change the outlook for this intractable disease.”