A Million Patients Have Innovated Their Own Medical Solutions, And Doctors Are Terrified
In the fall of 2017, patient advocate Renza Scibilia told a conference of endocrinologists in Australia about new, patient-developed artificial pancreas technology that helped her manage her Type 1 diabetes.
"Because it's not a regulated product, some [doctors] were worried and said 'What if it goes wrong?'"
"They were in equal measure really interested and really scared," recalled Scibilia. "Because it's not a regulated product, some were worried and said 'What if it goes wrong? What is my liability going to be?'"
That was two years ago. Asked if physicians have been more receptive to the same "looping" technology now that its benefits have been supported by considerable data (as Leapsmag pointed out in May), Scibilia said, "No. Clinicians are still really insecure. They're always going to be reluctant to accept consumer-driven technology."
This exemplifies a major challenge to the growing Do-It-Yourself (DIY) biohealth movement: physicians are unnerved and worried about innovations developed by patients and other consumers that haven't been tested in elaborate clinical trials or sanctioned by regulatory authorities.
"It's difficult for patients who develop new health technology to demonstrate the advantage in a way that physicians would accept." said Howard DeMonaco, visiting scientist at MIT's Sloan School of Management. "New approaches to the treatment of diseases are by definition suspect to clinicians. Most are risk averse unless there is a substantial advantage to the new approach and the risks in doing so appear to be minimized."
Nevertheless, the DIY biohealth movement is booming. About a million people reported that they created medical innovations to address their own medical needs in surveys conducted from 2010-2015 in the U.S., U.K., Finland, Canada and South Korea.
Add in other DIY health innovations created in homes, community biolabs and "Maker" health fairs, and it's clear that health care providers are increasingly confronted with medical devices, information technology, and even medications that were developed in unconventional settings and lack the blessing of regulatory authorities.
Researchers in Portugal have tried to spread the word about many of these solutions on the Patent Innovations website, which has more than 500 examples, ranging from a 3-D printed arm and hand to a sensor device that warns someone when an osteomy bag is full.
When Reddit asked medical professionals, "What is the craziest DIY health treatment you've seen a patient attempt?" thousands shared horror stories.
But even in this era of patient empowerment, more widespread use of DIY health solutions still depends upon the approval and cooperation of physicians, nurses and other caregivers. And health care providers still lack awareness of promising patient-developed innovations, according to Dr. Joyce Lee, a pediatric endocrinologist at the University of Michigan who advocates involving patients in the design of healthcare technology. "Most physicians are scared of what they don't know," she said.
They're also understandably worried about patients who don't know what they're doing and make irresponsible decisions. When Reddit asked medical professionals, "What is the craziest DIY health treatment you've seen a patient attempt?" thousands shared horror stories, including a man who poked a hole in his belly button with a knitting needle to relieve gas.
Yet DeMonaco and Lee think it's possible to start bridging the gaps between responsible patient innovators and skeptical doctors as well as unprepared regulatory systems.
One obstacle to consumer-driven health innovations is that clinical trials to prove their safety and effectiveness are expensive and time-consuming, as De Monaco points out in a recent article. He and his colleagues suggested that low-cost clinical trials by and for patients could help address this challenge. They urged patients to publish their own research and detail the impact of innovations on their own health, and create databases that incorporate the findings of other patients.
For example, Adam Brown, who has Type 1 diabetes, compared the effects of low and high carbohydrate diets on his blood sugar management, and conveyed the results in an online journal. "Sharing the information allowed others to copy the experiment," the article noted, suggesting that this could be a model to create multi-patient trials that could be "analyzed by expert patients and/or by professionals."
Asked how to convince health care providers to consider such research, DeMonaco cited the example of doctors prescribing "off label" drugs for purposes that aren't approved by the FDA. "The secret to off label use, like any other user innovation, is dissemination," he said. Sharing case reports and other low-cost research serves to disseminate the information "in a way that is comfortable for physicians," he said, and urged patient innovators to take the same approach.
The FDA regulates commercial products and has no authority if consumers want to use medical devices, medications, or information systems that they find on their own.
Physicians should also be encouraged to engage in patient-driven research, said Dr. Lee. She suggests forming "maker spaces in which patients and physicians are involved in designing personalized technology for chronic diseases. In my vision, patient peers would build, iterate, and learn from each other and the doctor would be part of the team, constantly assessing and evaluating the technology and facilitating the process."
Some kind of regulatory oversight of DIY health technology is also necessary, said Todd Kuiken, senior research scholar at NC State and former principal investigator at the Woodrow Wilson Center's Synthetic Biology Project.
The FDA regulates commercial products and has no authority if consumers want to use medical devices, medications, or information systems that they find on their own. But that doesn't stop regulators from worrying about patients who use them. For example, the FDA issued a warning about diabetes looping technology earlier this year after one diabetic was hospitalized with hypoglycemia.
Kuiken, for one, believes that citizen-driven innovation requires oversight "to move forward." He suggested that Internal Review Boards, with experts on medical technology, safety and ethics, could play a helpful role in validating the work of patient innovators and others engaged in DIY health research. "As people are developing health products, there would be experts available to take a look and check in," he said.
Kuiken pointed out that in native American territories, tribally based IRBs working with the national Indian Health Services help to oversee new health science research. The model could be applied more broadly.
He also offered hope to those who want to integrate the current health regulatory structure into the ecosystem of DIY health innovations. "I didn't expect people from the FDA or NIH to show up" he said about a workshop on citizen-driven biomedical research that he helped organize at the Wilson Center last year. But senior officials from both agencies attended.
He indicated they "were open to new ideas." While he wouldn't disclose contributions made by individual participants in the workshop, he said the government staffers were "very interested in figuring out how to engage with citizen health innovators, to build bridges with the DIY community."
"Why should we wait for regulatory bodies? Why wait for trials that take too long?"
Time will tell whether those bridges will be built quickly enough to increase the comfort of physicians with health innovations developed by patients and other consumers. In the meantime, DIY health innovators like patient advocate Scibilia are undeterred.
"Why should we wait for regulatory bodies?" she asked. "Why wait for trials that take too long? There are plenty of data out there indicating the [diabetes looping] technology works. So we're just going to do it. We're not waiting."
Scientists aim to preserve donkeys, one frozen embryo at a time
Every day for a week in 2022, Andres Gambini, a veterinarian and senior lecturer in animal science at the University of Queensland in Australia, walked into his lab—and headed straight to the video camera. Trained on an array of about 50 donkey embryos, all created by Gambini’s manual in vitro fertilization, or IVF, the camera kept an eye on their developmental progress. To eventually create a viable embryo that could be implanted into a female donkey, the embryos’ cells had to keep dividing, first in two, then in four and so on.
But the embryos weren’t cooperating. Some would start splitting up only to stop a day or two later, and others wouldn’t start at all. Every day he came in, Gambini saw fewer and fewer dividing embryos, so he was losing faith in the effort. “You see many failed attempts and get disappointed,” he says.
Gambini and his team, a group of Argentinian and Spanish researchers, were working to create these embryos because many donkey populations around the world are declining. It may sound counterintuitive that domesticated animals may need preservation, but out of 28 European donkey breeds, 20 are endangered and seven are in critical status. It is partly because of the inbreeding that happened over the course of many years and partly because in today’s Western world donkeys aren’t really used anymore.
“That's the reason why some breeds begin to disappear because humans were not really interested in having that specific breed anymore,” Gambini says. Nonetheless, in Africa, India and Latin America millions of rural families still rely on these hardy creatures for agriculture and transportation. And the only two wild donkey species—Equus africanus in Africa and Equus hemionus in Asia—are also dwindling, due to losing their habitats to human activities, diseases and slow reproduction rates. Gambini’s team wanted to create a way to preserve the animals for the future. “Donkeys are more endangered than people realize,” he says.
There’s much more to donkeys' trouble though. For the past 20 or so years, they have been facing a huge existential threat due to their hide gelatin, a compound derived from their skins by soaking and stewing. In Chinese traditional medicine, the compound, called ejiao, is believed to have a medicinal value, so it’s used in skin creams, added to food and taken in capsules. Centuries ago, ejiao was a very expensive luxury product available only for the emperor and his household. That changed in the 1990s when the Chinese economy boomed, and many people were suddenly able to afford it. “It went from a very elite product to a very popular product,” says Janneke Merkx, a campaign manager at The Donkey Sanctuary, a United Kingdom-based nonprofit organization that keeps tabs on the animals’ welfare worldwide. “It is a status symbol for gift giving.”
Having evolved in the harsh and arid mountainous terrains where food and water were scarce, donkeys are extremely adaptable and hardy. But the Donkey Sanctuary documented cases in which an entire village had their animals disappear overnight, finding them killed and skinned outside their settlement.
The Chinese donkey population was quickly decimated. Unlike many other farm animals, donkeys are finicky breeders. When stressed and unhappy, they don’t procreate, so growing them in large industrial settings isn’t possible. “Donkeys are notoriously slow breeders and really very difficult to farm,” says Merkx. “They are not the same as other livestock like sheep and pigs and cattle.” Within years the, the donkey numbers in China dropped precipitously. “China used to have the largest donkey population in the world in the 1990s. They had 11 million donkeys, and it's now down to less than 3 million, and they just can't keep up with the demand.”
To keep the ejiao conveyor going, some producers turned to the illegal wildlife trade. Poachers began to steal and slaughter donkeys from rural villages in Africa. The Donkey Sanctuary documented cases in which an entire village had their animals disappear overnight, finding them killed and skinned outside their settlement. Exactly how many creatures were lost to the skin trade to-date isn’t possible to calculate, says Faith Burden, the Donkey Sanctuary’s director of equine operations. Traditionally a poor people’s beast of burden, donkey counts are hard to keep track of. “When an animal doesn't produce meat, milk or eggs or whatever edible product, they're often less likely to be acknowledged in a government population census,” Burden says. “So reliable statistics are hard to come by.” The nonprofit estimates that about 4.8 million are slaughtered annually.
During their six to seven thousand years of domestication, donkeys rarely got the full appreciation for their services. They are often compared to horses, which doesn’t do them justice. They’re entirely different animals, Burden says. Built for speed, horses respond to predators and other dangers by running as fast as they can. Donkeys, which originate from the rocky, mountainous regions of Africa where running is dangerous, react to threats by freezing and assessing the situation for the best response. “Those so-called stubborn donkeys that won’t move as you want, they are actually thinking ‘what’s the best approach,’” Burden says. They may even choose to fight the predators rather than flee, she adds. “In some parts of the world, people use them as guard animals against things like coyotes and wolves.”
Scientists believe that domestic donkeys take their origin from Equus africanus or African wild ass, originally roaming where Kenya, Ethiopia and Eritrea are today. Having evolved in the harsh and arid mountainous terrains where food and water were scarce, they are extremely adaptable and hardy. Research finds that they can go without water for 72 hours and then drink their fill without any negative consequences. Their big jaws let them chew tough desert shrubs, which horses can’t exist on. Their large ears help dissipate heat. Their little upright hooves are a perfect fit for the uneven rocky or other dangerous grounds. Accustomed to the mountain desert climate with hot days and cold nights, they don’t mind temperature flux.
“The donkey is the most supremely adapted animal to deal with hostile conditions,” Burden says. “They can survive on much lower nutritional quality food than a cow, sheep or horse. That’s why communities living in some of the most inhospitable places will often have donkeys with them.” And that’s why losing a donkey to an illegal skin trade can devastate a family in places like Eritrea. Suddenly everything from water to firewood to produce must be carried by family members—and often women.
Workers unloading donkeys at the Shinyanga slaughterhouse in Tanzania. Fearing a future in which donkeys go extinct, scientists have found ways to cryopreserve a donkey embryo in liquid nitrogen.
TAHUCHA
One can imagine a time when worldwide donkey populations may dwindle to the point that they would need to be restored. That includes their genetic variability too. That’s where the frozen embryos may come in handy. We may be able to use them to increase the genetic variability of donkeys, which will be especially important if they get closer to extinction, Gambini says. His team had already created frozen embryos for horses and zebras, an idea similar to a seed bank. “We call this concept the Frozen Zoo.”
Creating donkey embryos proved much harder than those of zebras and horses. To improve chances of fertilization, Gambini used the intracytoplasmic sperm injection or ICSI, in which he employed a tiny needle called a micropipette to inject a donkey sperm into an egg. That was a step above the traditional IVF method, in which the egg and a sperm are left floating in a test tube together. The injection took, but during the incubating week, one after the other, the embryos stopped dividing. Finally, on day seven, Gambini finally spotted the exact sight he was hoping to see. One of the embryos developed into a burgeoning ball of cells.
“That stage is called a blastocyst,” Gambini says. The clump of cells had a lot of fluids mixed within them, which indicated that they were finally developing into a viable embryo. “When we see a blastocyst, we know we can transfer that into a female.” He was so excited he immediately called all his collaborators to tell them the good news, which they later published in the journal of Theriogenology.
The one and only embryo to reach that stage, the blastocyst was cryopreserved in liquid nitrogen. The team is waiting for the next breeding season to see if a female donkey may carry it to term and give birth to a healthy foal. Gambini’s team is hoping to polish the process and create more embryos. “It’s our weapon in the conservation ass-enal,” he says.
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.
Too much of this ingredient leads to autoimmune diseases, new research shows. Here's how to cut back.
For more than a century, doctors have warned that too much salt in your diet can lead to high blood pressure, heart disease and stroke - and many of the reasons for these effects are well known. But recently scientists have been looking deeper, into the cellular level, and they are finding additional reasons to minimize sodium intake; it is bad for immune cells, creating patterns of gene expression and activity seen in a variety of autoimmune diseases such as multiple sclerosis, lupus, rheumatoid arthritis, and type-1 diabetes.
Salt is a major part of the ocean from which life evolved on this planet. We carry that legacy in our blood, which tastes salty. It is an important element for conducting electrical signals along nerves and balancing water and metabolites transported throughout our bodies. We need to consume about 500 milligrams of salt each day to maintain these functions, more with exercise and heavy sweating as that is a major way the body loses salt. The problem is that most Americans eating a modern western diet consume about 3400 milligrams, 1.5 teaspoons per day.
Evidence has been accumulating over the last few years that elevated levels of sodium can be harmful to at least some types of immune cells. The first signal came in monocytes, which are immune cells that travel to various tissues in the body, where some of them turn into macrophages, a subset of white blood cells that can directly kill microorganisms and make chemical signals that bring other types of immune cells into play.
Two years ago, Dominik N. Müller from the Max-Delbrueck-Center in Berlin, Germany and Markus Kleinewietfeld, an immunologist at Hasselt University in Belgium, ran a study where they fed people pizza and then measured their immune cell function. “We saw that in any monocytes, metabolic function was down, even after a single salty meal,” Kleinewietfeld says. It seemed to be the cellular equivalent of the sluggish feeling we get after eating too much. The cells were able to recover but more research is needed to answer questions about what dose of sodium causes impairment, how long the damage lasts, and whether there is a cumulative effect of salt toxicity.
Kleinewietfeld and his colleagues have hypothesized that too much salt could be a significant factor in the increased number of autoimmune diseases and allergies over the last few generations.
The latest series of experiments focused on a type of T cell called T regulatory cells, or Tregs. Most T cells release inflammatory mediators to fight pathogens and, once that job is done, Tregs come along to calm down their hyperactive brethren. Failure to do so can result in continued inflammation and possibly autoimmune diseases.
In the lab, Kleinewietfeld and his large team of international collaborators saw that high levels of sodium had a huge effect on Tregs, upregulating 1250 genes and downregulating an additional 1380 genes so that they looked similar to patterns of gene expression seen in autoimmune diseases.
Digging deeper, they found that sodium affected mitochondria, the tiny organelles inside of cells that produce much of its energy. The sodium was interfering with how the mitochondria use oxygen, which resulted in increased levels of an unstable form of oxygen that can damage cell function. The researchers injected those damaged Tregs into mice and found that they impaired the animals' immune function, allowing the inflammation to continue rather than shutting it down.
That finding dovetailed nicely with a 2019 paper in Nature from Navdeep Chandel's lab at Northwestern University, which showed in mice that inhibiting the mitochondrial use of oxygen reduced the ability of Tregs to regulate other T cells. “Mitochondria were controlling directly the immunosuppressive program, they were this master regulator tuning the right amount of genes to give you proper immunosuppression,” Chandel said. “And if you lose that function, then you get autoimmunity.”
Kleinewietfeld's team studied the Treg cells of humans and found that sodium can similarly decrease mitochondrial use of oxygen and immunosuppressive activity. “I would have never predicted that myself,” Chandel says, but now researchers can look at the mitochondria of patients with autoimmune disease and see if their gene expression also changes under high salt conditions. He sees the link between the patterns of gene expression in Tregs generated by high salt exposure and those patterns seen in autoimmune diseases, but he is cautious about claiming a causal effect.
Kleinewietfeld and his colleagues have hypothesized that too much salt could be a significant factor in the increased number of autoimmune diseases and allergies over the last few generations. He says a high salt diet could also have an indirect effect on immune function through the way it affects the gut microbiome and the molecules made by microbes when they break down food. But the research results are too preliminary to say that for sure, much less parse out the role of salt compared with other possible factors. “It is still an exciting journey to try to understand this field,” he says.
Additionally, it is difficult to say precisely how this research in animals and human cell cultures will translate into a whole human body. Individual differences in genetics can affect how the body absorbs, transports, and gets rid of sodium, such that some people are more sensitive to salt than are others.
So how should people apply these research findings to daily life?
Salt is obvious when we sprinkle it on at the table or eat tasty things like potato chips, but we may be unaware of sodium hidden in packaged foods. That's because salt is an easy and cheap way to boost the flavor of foods. And if we do read the labeled salt content on a package, we focus on the number for a single serving, but then eat more than that.
Last September, the U.S. Food and Drug Administration (FDA) began a process to update labels on the content of food, including what is meant by the word “healthy” and how food manufacturers can use the term. Many in the food industry are resisting those proposed changes.
Chandel cautions against trying to counter the effects of salt by reaching for foods or supplements full of antioxidants, which, in theory, could reduce the harmful effects on mitochondria caused by a heavy hand with the salt shaker.
Until labels are updated, it would be prudent to try to reduce sodium intake by cutting down on packaged foods while making your own food at home, where you know just how much salt has been added. The Mayo Clinic offers guidance on how to become more aware of the sodium in your diet and eat less of it.
Chandel thinks many people will struggle with minimizing salt in their diets. It’s similar to the challenge of eating less sugar, in that the body craves both, and it is difficult to fight that. He cautions against trying to counter the effects of salt by reaching for foods or supplements full of antioxidants, which, in theory, could reduce the harmful effects on mitochondria caused by a heavy hand with the salt shaker. “Dietary antioxidants have failed in just about every clinical trial, yet the public continues to take them,” Chandel says. But he is optimistic that research will lead us to a better understanding of how Tregs function, and uncover new targets for treating autoimmune diseases.