A ‘Press Release from the Future’ Announces Service for Parents to Genetically Engineer Their Kids
Most people don't recognize how significantly and soon the genetic revolution will transform healthcare, the way we make babies, and the nature of the babies we make. The press release below is a thought experiment today. Within a decade, it won't be. * * *
Genomix Launches uDarwin, a New Business to Help Parents Optimize the Health, Well-Being, and Beneficial Traits of their Future Offspring
NEW YORK, July 29, 2029 /PRMediawire/ -- Genomix, a Caribbean-based health and wellness company, today announced the launch of uDarwin, a discrete, confidential service helping parents select and edit the pre-implanted embryos of their future children.
"Our mission is to help prospective parents realize their dream of parenthood in the safest manner possible while helping them optimize their future children's potential."
"We often fetishize nature," said Genomix Medical Director and Co-Founder Dr. Noam Heller, "but the traditional process of conception through sex confers risks on future children that can be significantly reduced through the careful and safe application of powerful new technologies."
Approximately three percent of all children are born with some type of harmful genetic mutation. Through its patented process of extracting eggs from the prospective mother, fertilizing these eggs with sperm from the intended father or from one of the superstar donor samples in the proprietary uDarwin gene bank, and screening up to twenty of these embryos prior to implantation, this risk can be brought down to under one percent.
"Having a baby is the most intimate and important experience in most people's lives," said Genomix CEO and co-founder Rich Azadian. "Our mission is to help prospective parents realize their dream of parenthood in the safest manner possible while helping them optimize their future children's potential."
In addition to screening pre-implanted embryos to significantly reduce disease risk, uDarwin uses its proprietary algorithm for the "polygenic scoring" of embryos to directionally predict potential future attributes including healthspan, height, IQ, personality style, and other complex genetic traits. Attributes once accepted as being the result of fate or chance can now increasingly be selected by parents from among their own natural embryos using this entirely safe process.
A premium product offering, uDarwin+, provides parents the opportunity to make up to three single gene mutations to their selected embryo to reduce a risk or confer a particular benefit. Among the most popular options for this service include increased resistance to HIV and other viruses, a greater ability to build muscle mass, and enhanced cognition. Additional edits will be made available as the science of human genome editing further advances.
Jamie Metzl's new book, Hacking Darwin: Genetic Engineering and the Future of Humanity, explores how the genetic revolution is transforming our healthcare, the way we make babies, and the nature of and babies we make, what this means for each of us, and what we must all do now to prepare for what's coming.
"uDarwin is proud to be the first company in the world offering the highest level of reproductive choice to parents," Mr. Azadian continued. "Genetic technologies are allowing us for the first time to crack the code of our health and identity. As pioneers in applying the most advanced genetic technologies to human reproduction, we recognize that prospective parents' desire for the services we offer exceeds societal levels of comfort with this technology. Our highest levels of customer service, comfort, and confidentiality ensure parents can secure massive benefits for their future children while avoiding unnecessary attention or any compromise of privacy."
All uDarwin services will be carried out in the company's state-of-the-art clinic aboard a super-luxury 500-foot yacht operating in international waters. After applying on the secure uDarwin website and gaining approval, clients are provided a date, time, and location to meet a company representative at a conveniently located Caribbean marina from where they will be shuttled to the uDarwin clinic. "Pioneers have always traveled beyond boundaries to create new possibilities," Mr. Azadian added. "Conceiving a child in a location where it can receive the greatest benefits of advanced science is no different."
"Pioneers have always traveled beyond boundaries to create new possibilities."
The cost of the basic uDawin service is $5 million, with half paid up front and half paid following the successful birth of a baby. Charges for uDarwin+, premium sperm or egg donors, surrogates, and other services are additional. "uDarwin is not for everyone," Mr. Azadian said, "but most parents of significant means understand that the benefits of optimal genetics far exceed almost any monetary cost."
"The genetic revolution has already begun," Medical Director Heller added. "The question for prospective parents is whether they want to be the last parents who left the health and identity of their future children to chance or the first to give their future children the greatest chance of optimal health and maximal fulfillment in the new reality that will arrive far sooner than most people appreciate."
If you could genetically alter your future children, would you? https://t.co/N0tqwX4Qd3— leapsmag (@leapsmag) 1564426548.0
Catching colds may help protect kids from Covid
A common cold virus causes the immune system to produce T cells that also provide protection against SARS-CoV-2, according to new research. The study, published last month in PNAS, shows that this effect is most pronounced in young children. The finding may help explain why most young people who have been exposed to the cold-causing coronavirus have not developed serious cases of COVID-19.
One curiosity stood out in the early days of the COVID-19 pandemic – why were so few kids getting sick. Generally young children and the elderly are the most vulnerable to disease outbreaks, particularly viral infections, either because their immune systems are not fully developed or they are starting to fail.
But solid information on the new infection was so scarce that many public health officials acted on the precautionary principle, assumed a worst-case scenario, and applied the broadest, most restrictive policies to all people to try to contain the coronavirus SARS-CoV-2.
One early thought was that lockdowns worked and kids (ages 6 months to 17 years) simply were not being exposed to the virus. So it was a shock when data started to come in showing that well over half of them carried antibodies to the virus, indicating exposure without getting sick. That trend grew over time and the latest tracking data from the CDC shows that 96.3 percent of kids in the U.S. now carry those antibodies.
Antibodies are relatively quick and easy to measure, but some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
But that couldn't be the whole story because antibody protection fades, sometimes as early as a month after exposure and usually within a year. Additionally, SARS-CoV-2 has been spewing out waves of different variants that were more resistant to antibodies generated by their predecessors. The resistance was so significant that over time the FDA withdrew its emergency use authorization for a handful of monoclonal antibodies with earlier approval to treat the infection because they no longer worked.
Antibodies got most of the attention early on because they are part of the first line response of the immune system. Antibodies can bind to viruses and neutralize them, preventing infection. They are relatively quick and easy to measure and even manufacture, but as SARS-CoV-2 showed us, often viruses can quickly evolve to become more resistant to them. Some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
Kids, colds and T cells
T cells are part of the immune system that deals with cells once they have become infected. But working with T cells is much more difficult, takes longer, and is more expensive than working with antibodies. So studies often lags behind on this part of the immune system.
A group of researchers led by Annika Karlsson at the Karolinska Institute in Sweden focuses on T cells targeting virus-infected cells and, unsurprisingly, saw that they can play a role in SARS-CoV-2 infection. Other labs have shown that vaccination and natural exposure to the virus generates different patterns of T cell responses.
The Swedes also looked at another member of the coronavirus family, OC43, which circulates widely and is one of several causes of the common cold. The molecular structure of OC43 is similar to its more deadly cousin SARS-CoV-2. Sometimes a T cell response to one virus can produce a cross-reactive response to a similar protein structure in another virus, meaning that T cells will identify and respond to the two viruses in much the same way. Karlsson looked to see if T cells for OC43 from a wide age range of patients were cross-reactive to SARS-CoV-2.
And that is what they found, as reported in the PNAS study last month; there was cross-reactive activity, but it depended on a person’s age. A subset of a certain type of T cells, called mCD4+,, that recognized various protein parts of the cold-causing virus, OC43, expressed on the surface of an infected cell – also recognized those same protein parts from SARS-CoV-2. The T cell response was lower than that generated by natural exposure to SARS-CoV-2, but it was functional and thus could help limit the severity of COVID-19.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco.
“The cross-reactivity peaked at age six when more than half the people tested have a cross-reactive immune response,” says Karlsson, though their sample is too small to say if this finding applies more broadly across the population. The vast majority of children as young as two years had OC43-specific mCD4+ T cell responses. In adulthood, the functionality of both the OC43-specific and the cross-reactive T cells wane significantly, especially with advanced age.
“Considering that the mortality rate in children is the lowest from ages five to nine, and higher in younger children, our results imply that cross-reactive mCD4+ T cells may have a role in the control of SARS-CoV-2 infection in children,” the authors wrote in their paper.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco and author of the book, Endemic: A Post-Pandemic Playbook, to be released by the Mayo Clinic Press this summer. The immune response of kids to SARS-CoV-2 stood our expectations on their head. “We just haven't seen this before, so knowing the mechanism of protection is really important.”
Why the T cell immune response can fade with age is largely unknown. With some viruses such as measles, a single vaccination or infection generates life-long protection. But respiratory tract infections, like SARS-CoV-2, cause a localized infection - specific to certain organs - and that response tends to be shorter lived than systemic infections that affect the entire body. Karlsson suspects the elderly might be exposed to these localized types of viruses less often. Also, frequent continued exposure to a virus that results in reactivation of the memory T cell pool might eventually result in “a kind of immunosenescence or immune exhaustion that is associated with aging,” Karlsson says. https://leaps.org/scientists-just-started-testing-a-new-class-of-drugs-to-slow-and-even-reverse-aging/particle-3 This fading protection is why older people need to be repeatedly vaccinated against SARS-CoV-2.
Policy implications
Following the numbers on COVID-19 infections and severity over the last three years have shown us that healthy young people without risk factors are not likely to develop serious disease. This latest study points to a mechanism that helps explain why. But the inertia of existing policies remains. How should we adjust policy recommendations based on what we know today?
The World Health Organization (WHO) updated their COVID-19 vaccination guidance on March 28. It calls for a focus on vaccinating and boosting those at risk for developing serious disease. The guidance basically shrugged its shoulders when it came to healthy children and young adults receiving vaccinations and boosters against COVID-19. It said the priority should be to administer the “traditional essential vaccines for children,” such as those that protect against measles, rubella, and mumps.
“As an immunologist and a mother, I think that catching a cold or two when you are a kid and otherwise healthy is not that bad for you. Children have a much lower risk of becoming severely ill with SARS-CoV-2,” says Karlsson. She has followed public health guidance in Sweden, which means that her young children have not been vaccinated, but being older, she has received the vaccine and boosters. Gandhi and her children have been vaccinated, but they do not plan on additional boosters.
The WHO got it right in “concentrating on what matters,” which is getting traditional childhood immunizations back on track after their dramatic decline over the last three years, says Gandhi. Nor is there a need for masking in schools, according to a study from the Catalonia region of Spain. It found “no difference in masking and spread in schools,” particularly since tracking data indicate that nearly all young people have been exposed to SARS-CoV-2.
Both researchers lament that public discussion has overemphasized the quickly fading antibody part of the immune response to SARS-CoV-2 compared with the more durable T cell component. They say developing an efficient measure of T cell response for doctors to use in the clinic would help to monitor immunity in people at risk for severe cases of COVID-19 compared with the current method of toting up potential risk factors.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on new scientific theories and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the stories covered this week:
- The eyes are the windows to the soul - and biological aging?
- What bean genes mean for health and the planet
- This breathing practice could lower levels of tau proteins
- AI beats humans at assessing heart health
- Should you get a nature prescription?