A ‘Press Release from the Future’ Announces Service for Parents to Genetically Engineer Their Kids
Most people don't recognize how significantly and soon the genetic revolution will transform healthcare, the way we make babies, and the nature of the babies we make. The press release below is a thought experiment today. Within a decade, it won't be. * * *
Genomix Launches uDarwin, a New Business to Help Parents Optimize the Health, Well-Being, and Beneficial Traits of their Future Offspring
NEW YORK, July 29, 2029 /PRMediawire/ -- Genomix, a Caribbean-based health and wellness company, today announced the launch of uDarwin, a discrete, confidential service helping parents select and edit the pre-implanted embryos of their future children.
"Our mission is to help prospective parents realize their dream of parenthood in the safest manner possible while helping them optimize their future children's potential."
"We often fetishize nature," said Genomix Medical Director and Co-Founder Dr. Noam Heller, "but the traditional process of conception through sex confers risks on future children that can be significantly reduced through the careful and safe application of powerful new technologies."
Approximately three percent of all children are born with some type of harmful genetic mutation. Through its patented process of extracting eggs from the prospective mother, fertilizing these eggs with sperm from the intended father or from one of the superstar donor samples in the proprietary uDarwin gene bank, and screening up to twenty of these embryos prior to implantation, this risk can be brought down to under one percent.
"Having a baby is the most intimate and important experience in most people's lives," said Genomix CEO and co-founder Rich Azadian. "Our mission is to help prospective parents realize their dream of parenthood in the safest manner possible while helping them optimize their future children's potential."
In addition to screening pre-implanted embryos to significantly reduce disease risk, uDarwin uses its proprietary algorithm for the "polygenic scoring" of embryos to directionally predict potential future attributes including healthspan, height, IQ, personality style, and other complex genetic traits. Attributes once accepted as being the result of fate or chance can now increasingly be selected by parents from among their own natural embryos using this entirely safe process.
A premium product offering, uDarwin+, provides parents the opportunity to make up to three single gene mutations to their selected embryo to reduce a risk or confer a particular benefit. Among the most popular options for this service include increased resistance to HIV and other viruses, a greater ability to build muscle mass, and enhanced cognition. Additional edits will be made available as the science of human genome editing further advances.
Jamie Metzl's new book, Hacking Darwin: Genetic Engineering and the Future of Humanity, explores how the genetic revolution is transforming our healthcare, the way we make babies, and the nature of and babies we make, what this means for each of us, and what we must all do now to prepare for what's coming.
"uDarwin is proud to be the first company in the world offering the highest level of reproductive choice to parents," Mr. Azadian continued. "Genetic technologies are allowing us for the first time to crack the code of our health and identity. As pioneers in applying the most advanced genetic technologies to human reproduction, we recognize that prospective parents' desire for the services we offer exceeds societal levels of comfort with this technology. Our highest levels of customer service, comfort, and confidentiality ensure parents can secure massive benefits for their future children while avoiding unnecessary attention or any compromise of privacy."
All uDarwin services will be carried out in the company's state-of-the-art clinic aboard a super-luxury 500-foot yacht operating in international waters. After applying on the secure uDarwin website and gaining approval, clients are provided a date, time, and location to meet a company representative at a conveniently located Caribbean marina from where they will be shuttled to the uDarwin clinic. "Pioneers have always traveled beyond boundaries to create new possibilities," Mr. Azadian added. "Conceiving a child in a location where it can receive the greatest benefits of advanced science is no different."
"Pioneers have always traveled beyond boundaries to create new possibilities."
The cost of the basic uDawin service is $5 million, with half paid up front and half paid following the successful birth of a baby. Charges for uDarwin+, premium sperm or egg donors, surrogates, and other services are additional. "uDarwin is not for everyone," Mr. Azadian said, "but most parents of significant means understand that the benefits of optimal genetics far exceed almost any monetary cost."
"The genetic revolution has already begun," Medical Director Heller added. "The question for prospective parents is whether they want to be the last parents who left the health and identity of their future children to chance or the first to give their future children the greatest chance of optimal health and maximal fulfillment in the new reality that will arrive far sooner than most people appreciate."
If you could genetically alter your future children, would you? https://t.co/N0tqwX4Qd3— leapsmag (@leapsmag) 1564426548.0
Few things are more painful than a urinary tract infection (UTI). Common in men and women, these infections account for more than 8 million trips to the doctor each year and can cause an array of uncomfortable symptoms, from a burning feeling during urination to fever, vomiting, and chills. For an unlucky few, UTIs can be chronic—meaning that, despite treatment, they just keep coming back.
But new research, presented at the European Association of Urology (EAU) Congress in Paris this week, brings some hope to people who suffer from UTIs.
Clinicians from the Royal Berkshire Hospital presented the results of a long-term, nine-year clinical trial where 89 men and women who suffered from recurrent UTIs were given an oral vaccine called MV140, designed to prevent the infections. Every day for three months, the participants were given two sprays of the vaccine (flavored to taste like pineapple) and then followed over the course of nine years. Clinicians analyzed medical records and asked the study participants about symptoms to check whether any experienced UTIs or had any adverse reactions from taking the vaccine.
The results showed that across nine years, 48 of the participants (about 54%) remained completely infection-free. On average, the study participants remained infection free for 54.7 months—four and a half years.
“While we need to be pragmatic, this vaccine is a potential breakthrough in preventing UTIs and could offer a safe and effective alternative to conventional treatments,” said Gernot Bonita, Professor of Urology at the Alta Bro Medical Centre for Urology in Switzerland, who is also the EAU Chairman of Guidelines on Urological Infections.
The news comes as a relief not only for people who suffer chronic UTIs, but also to doctors who have seen an uptick in antibiotic-resistant UTIs in the past several years. Because UTIs usually require antibiotics, patients run the risk of developing a resistance to the antibiotics, making infections more difficult to treat. A preventative vaccine could mean less infections, less antibiotics, and less drug resistance overall.
“Many of our participants told us that having the vaccine restored their quality of life,” said Dr. Bob Yang, Consultant Urologist at the Royal Berkshire NHS Foundation Trust, who helped lead the research. “While we’re yet to look at the effect of this vaccine in different patient groups, this follow-up data suggests it could be a game-changer for UTI prevention if it’s offered widely, reducing the need for antibiotic treatments.”
MILESTONE: Doctors have transplanted a pig organ into a human for the first time in history
Surgeons at Massachusetts General Hospital made history last week when they successfully transplanted a pig kidney into a human patient for the first time ever.
The recipient was a 62-year-old man named Richard Slayman who had been living with end-stage kidney disease caused by diabetes. While Slayman had received a kidney transplant in 2018 from a human donor, his diabetes ultimately caused the kidney to fail less than five years after the transplant. Slayman had undergone dialysis ever since—a procedure that uses an artificial kidney to remove waste products from a person’s blood when the kidneys are unable to—but the dialysis frequently caused blood clots and other complications that landed him in the hospital multiple times.
As a last resort, Slayman’s kidney specialist suggested a transplant using a pig kidney provided by eGenesis, a pharmaceutical company based in Cambridge, Mass. The highly experimental surgery was made possible with the Food and Drug Administration’s “compassionate use” initiative, which allows patients with life-threatening medical conditions access to experimental treatments.
The new frontier of organ donation
Like Slayman, more than 100,000 people are currently on the national organ transplant waiting list, and roughly 17 people die every day waiting for an available organ. To make up for the shortage of human organs, scientists have been experimenting for the past several decades with using organs from animals such as pigs—a new field of medicine known as xenotransplantation. But putting an animal organ into a human body is much more complicated than it might appear, experts say.
“The human immune system reacts incredibly violently to a pig organ, much more so than a human organ,” said Dr. Joren Madsen, director of the Mass General Transplant Center. Even with immunosuppressant drugs that suppress the body’s ability to reject the transplant organ, Madsen said, a human body would reject an animal organ “within minutes.”
So scientists have had to use gene-editing technology to change the animal organs so that they would work inside a human body. The pig kidney in Slayman’s surgery, for instance, had been genetically altered using CRISPR-Cas9 technology to remove harmful pig genes and add human ones. The kidney was also edited to remove pig viruses that could potentially infect a human after transplant.
With CRISPR technology, scientists have been able to prove that interspecies organ transplants are not only possible, but may be able to successfully work long term, too. In the past several years, scientists were able to transplant a pig kidney into a monkey and have the monkey survive for more than two years. More recently, doctors have transplanted pig hearts into human beings—though each recipient of a pig heart only managed to live a couple of months after the transplant. In one of the patients, researchers noted evidence of a pig virus in the man’s heart that had not been identified before the surgery and could be a possible explanation for his heart failure.
So far, so good
Slayman and his medical team ultimately decided to pursue the surgery—and the risk paid off. When the pig organ started producing urine at the end of the four-hour surgery, the entire operating room erupted in applause.
Slayman is currently receiving an infusion of immunosuppressant drugs to prevent the kidney from being rejected, while his doctors monitor the kidney’s function with frequent ultrasounds. Slayman is reported to be “recovering well” at Massachusetts General Hospital and is expected to be discharged within the next several days.