Advances Bring First True Hope to Spinal Cord Injury Patients
Seven years ago, mountain biking near his home in Whitefish, Montana, Jeff Marquis felt confident enough to try for a jump he usually avoided. But he hesitated just a bit as he was going over. Instead of catching air, Marquis crashed.
Researchers' major new insight is that recovery is still possible, even years after an injury.
After 18 days on a ventilator in intensive care and two-and-a-half months in a rehabilitation hospital, Marquis was able to move his arms and wrists, but not his fingers or anything below his chest. Still, he was determined to remain as independent as possible. "I wasn't real interested in having people take care of me," says Marquis, now 35. So, he dedicated the energy he formerly spent biking, kayaking, and snowboarding toward recovering his own mobility.
For generations, those like Marquis with severe spinal cord injuries dreamt of standing and walking again – with no realistic hope of achieving these dreams. But now, a handful of people with such injuries, including Marquis, have stood on their own and begun to learn to take steps again. "I'm always trying to improve the situation but I'm happy with where I'm at," Marquis says.
The recovery Marquis and a few of his fellow patients have achieved proves that our decades-old understanding of the spinal cord was wrong. Researchers' major new insight is that recovery is still possible, even years after an injury. Only a few thousand nerve cells actually die when the spinal cord is injured. The other neurons still have the ability to generate signals and movement on their own, says Susan Harkema, co-principal investigator at the Kentucky Spinal Cord Injury Research Center, where Marquis is being treated.
"The spinal cord has much more responsibility for executing movement than we thought before," Harkema says. "Successful movement can happen without those connections from the brain." Nerve cell circuits remaining after the injury can control movement, she says, but leaving people sitting in a wheelchair doesn't activate those sensory circuits. "When you sit down, you lose all the sensory information. The whole circuitry starts discombobulating."
Harkema and others use a two-pronged approach – both physical rehabilitation and electrical stimulation – to get those spinal cord circuits back into a functioning state. Several research groups are still honing this approach, but a few patients have already taken steps under their own power, and others, like Marquis, can now stand unassisted – both of which were merely fantasies for spinal cord injury patients just five years ago.
"This really does represent a leap forward in terms of how we think about the capacity of the spinal cord to be repaired after injury," says Susan Howley, executive vice president for research for the Christopher & Dana Reeve Foundation, which supports research for spinal cord injuries.
Jeff Marquis biking on a rock before his accident.
This new biological understanding suggests the need for a wholesale change in how people are treated after a spinal cord injury, Howley says. But today, most insurance companies cover just 30-40 outpatient rehabilitation sessions per year, whether you've sprained your ankle or severed your spinal cord. To deliver the kind of therapy that really makes a difference for spinal cord injury patients requires "60-80-90 or 150 sessions," she says, adding that she thinks insurance companies will more than make up for the cost of those therapy sessions if spinal cord injury patients are healthier. Early evidence suggests that getting people back on their feet helps prevent medical problems common among paralyzed people, including urinary tract infections, which can require costly hospital stays.
"Exercise and the ability to fully bear one's own weight are as crucial for people who live with paralysis as they are for able-bodied people," Howley notes, adding that the Reeve Foundation is now trying to expand the network of facilities available in local communities to offer this essential rehabilitation.
"Providing the right kind of training every day to people could really improve their opportunity to recover," Harkema says.
It's not entirely clear yet how far someone could progress with rehabilitation alone, Harkema says, but probably the best results for someone with a severe injury will also require so-called epidural electrical stimulation. This device, implanted in the lower back for a cost of about $30,000, sends an electrical current at varying frequencies and intensities to the spinal cord. Several separate teams of researchers have now shown that epidural stimulation can help restore sensation and movement to people who have been paralyzed for years.
Epidural stimulation boosts the electrical signal that is generated below the point of injury, says Daniel Lu, an associate professor and vice chair of neurosurgery at the UCLA School of Medicine. Before a spinal cord injury, he says, a neuron might send a message at a volume of 10 but after injury, that volume might drop to a two or three. The epidural stimulation potentially trains the neuron to respond to the lower volume, Lu says.
Lu has used such stimulators to improve hand function – "essentially what defines us" – in two patients with spinal cord injuries. Both increased their grip strength so they now can lift a cup to drink by themselves, which they couldn't do before. He's also used non-invasive stimulation to help restore bladder function, which he says many spinal cord injury patients care about as much as walking again.
A closeup of the stimulator.
Not everyone will benefit from these treatments. People whose injury was caused by a cut to the spinal cord, as with a knife or bullet, probably can't be helped, Lu says, adding that they account for less than 5 percent of spinal cord injuries.
The current challenge Lu says is not how to stimulate the spinal cord, but where to stimulate it and the frequency of stimulation that will be most effective for each patient. Right now, doctors use an off-the-shelf stimulator that is used to treat pain and is not optimized for spinal cord patients, Harkema says.
Swiss researchers have shown impressive results from intermittent rather than continuous epidural stimulation. These pulses better reflect the way the brain sends its messages, according to Gregoire Courtine, the senior author on a pair of papers published Nov. 1 in Nature and Nature Neuroscience. He showed that he could get people up and moving within just a few days of turning on the stimulation. Three of his patients are walking again with only a walker or minimal assistance, and they also gained voluntary leg movements even when the stimulator was off. Continuous stimulation, this research shows, actually interferes with the patients' perception of limb position, and thus makes it harder for them to relearn to walk.
Even short of walking, proper physical rehabilitation and electrical stimulation can transform the quality of life of people with spinal cord injury, Howley and Harkema say. Patients don't need to be able to reach the top shelf or run a marathon to feel like they've been "cured" from their paralysis. Instead, recovering bowel, bladder and sexual functions, the ability to regulate their temperature and blood pressure, and reducing the breakdown of skin that can lead to a life-threatening infection can all be transformative – and all appear to improve with the combination of rehabilitation and electrical stimulation.
Howley cites a video of one of Harkema's patients, Stefanie Putnam, who was passing out five to six times a day because her blood pressure was so low. She couldn't be left alone, which meant she had no independence. After several months of rehabilitation and stimulation, she can now sit up for long periods, be left alone, and even, she says gleefully, cook her own dinner. "Every time I watch it, it brings me to tears," Howley says of the video. "She's able to resume her normal life activity. It's mind-boggling."
The work also suggests a transformation in the care of people immediately after injury. They should be allowed to stand and start taking steps as soon as possible, even if they cannot do it under their own power, Harkema says. Research is also likely to show that quickly implanting a stimulator after an injury will make a difference, she says.
There may be medications that can help immediately after an injury, too. One drug currently being studied, called riluzole, has already been approved for ALS and might help limit the damage of a spinal cord injury, Howley says. But testing its effectiveness has been a slow process, she says, because it needs to be given within 12 hours of the initial injury and not enough people get to the testing sites in time.
Stem cell therapy also offers promise for spinal cord injury patients, Howley says – but not the treatments currently provided by commercial stem cell clinics both in the U.S. and overseas, which she says are a sham. Instead, she is carefully following research by a California-based company called Asterias Biotherapeutics, which announced plans Nov. 8 to merge with a company called BioTime.
Asterias and a predecessor company have been treating people since 2010 in an effort to regrow nerves in the spinal cord. All those treated have safely tolerated the cells, but not everyone has seen a huge improvement, says Edward Wirth, who has led the trial work and is Asterias' chief medical director. He says he thinks he knows what's held back those who didn't improve much, and hopes to address those issues in the next 3- to 4-year-long trial, which he's now discussing with the U.S. Food and Drug Administration.
So far, he says, some patients have had an almost complete return of movement in their hands and arms, but little improvement in their legs. The stem cells seem to stimulate tissue repair and regeneration, he says, but only around the level of the injury in the spinal cord and a bit below. The legs, he says, are too far away to benefit.
Wirth says he thinks a combination of treatments – stem cells, electrical stimulation, rehabilitation, and improved care immediately after an injury – will likely produce the best results.
While there's still a long way to go to scale these advances to help the majority of the 300,000 spinal cord injury patients in the U.S., they now have something that's long been elusive: hope.
"Two or three decades ago there was no hope at all," Howley says. "We've come a long way."
Air pollution can lead to lung cancer. The connection suggests new ways to stop cancer in its tracks.
Forget taking a deep breath. Around the world, 99 percent of people breathe air polluted to unsafe levels, according to data from the World Health Organization. Activities such as burning fossil fuels release greenhouse gases that contribute to air pollution, which could lead to heart disease, stroke, asthma, emphysema, and some types of cancer.
“The burden of disease attributable to air pollution is now estimated to be on a par with other major global health risks such as unhealthy diet and tobacco smoking, and air pollution is now recognized as the single biggest environmental threat to human health,” wrote the authors of a 2021 WHO report.
The majority of lung cancer is attributed to smoking. But as pollution levels have increased, and anti-smoking campaigns have discouraged smoking, the proportion of lung cancers diagnosed in non-smokers has grown. The CDC estimates that 10 to 20 percent of lung cancers in the U.S. currently occur in non-smokers.
The mechanism between air pollution and the development of lung cancer has been unclear, but researchers at London’s Francis Crick Institute recently made an important breakthrough in understanding the connection. Lead investigator Charles Swanton presented this research last month at a conference in Paris.
Pollution awakens mutations
The Crick Institute scientists were able to identify a new link between common air pollutants and non-small cell lung cancer (NSCLC). They focused on pollutants called particulate matter, or PM, that are 2.5 microns wide, narrower than human cells.
Most cancer diagnosed in non-smoking people is NSCLC, but this type of cancer hasn’t received the same research attention as more common lung cancers found in smokers, according to Clare Weeden, a cancer researcher at the Crick Institute and a co-author of the study.
“This is a really underserved and under-researched population that we really need to tackle, as well as lung cancers that occur in smokers,” she says. “Lung cancer is the number one cancer killer worldwide.”
In the past, some researchers believed air pollution caused mutations that led to cancer. Others believed these mutations could remain dormant without any detriment to health until pollutants or other stressors triggered them to become cancerous. Reviving the latter hypothesis that carcinogens may activate pre-existing mutations, instead of directly causing them, the Crick researchers analyzed samples from 463,679 people in the UK and parts of Asia, noting mutations and comparing changes in gene expression in mice and human cells.
“The mutation can exist in a nascent clone without causing cancer,” says Emilia Lim, a bioinformatics expert and a co-first author of the Crick study. “It is the carcinogen that promotes a conducive environment for this one little clone to grow and expand into cancer. Through our work, we were able to revive excitement for this hypothesis and bring it to light.”
The study explains a confusing pattern of lung cancer developing, particularly in women, despite a lack of environmental risk factors like smoking, secondhand smoke, or radon exposure. The culprit in these cases may have been too much PM 2.5 exposure.
Other researchers had previously identified a link between mutations in certain genes that control epidermal growth factor receptors, or EGFR mutations, and the development of NSCLC. In a 2019 study of 250 people with this type of cancer, about 32 percent had the mutation. Women are more likely to have EGFR mutations than men.
Not everyone who has the EGFR mutation will develop lung cancer. Respirologist Stephen Lam studies lung cancer at the BC Cancer Research Centre in Vancouver, Canada, but was not involved in the Crick Institute research. He says the study explains a confusing pattern of lung cancer developing, particularly in women, despite a lack of environmental risk factors like smoking, secondhand smoke, or radon exposure. The culprit in these cases may have been too much PM 2.5 exposure.
More exposure leads to inflammation and lesions
The Crick researchers found that an excess of PM 2.5 in the air sparked an inflammatory process in cells within the lung. This inflammation set the stage for NSCLC to develop in people and mice with existing EGFR mutations.
The researchers also exposed mice without EGFR mutations to PM 2.5 pollution—an experiment that couldn’t be ethically conducted in humans—to link pollution exposure to NSCLC. The mice experiments also showed that NSCLC is dose-dependent; higher levels of exposure were associated with higher number of cancerous lesions forming.
Ultimately, the study “fundamentally changed how we view lung cancer in people who have never smoked,” said Swanton in a Crick Institute press release. “Cells with cancer-causing mutations accumulate naturally as we age, but they are normally inactive. We’ve demonstrated that air pollution wakes these cells up in the lungs, encouraging them to grow and potentially form tumors.”
Preventing cancer before it begins
Targeted therapies already exist for people with EGFR mutations who’ve developed NSCLC, but they have many side effects, according to Weeden. Researchers hope that making more definitive links between pollutants and cancer could help prevent people with EGFR or other mutations from developing lung cancer in the first place.
Along those lines, as an additional component of their study presented last month, the Crick researchers were able to prevent cancer in mice that had the EGFR mutations by blocking inflammation. They used an antibody to inhibit a protein called interleukin 1 beta, which plays a key role in inflammation. Scientists could eventually use such antibodies or other therapies to make a drug treatment that people can take to stop cancer in its tracks, even if they live in highly polluted areas.
Such potential could reach beyond lung cancer; in the past, Crick and other researchers have also found associations between exposure to air pollution and mesothelioma, as well as cancers of the small intestine, lip, mouth, and throat. These links could be meaningful to a growing number of people as climate change intensifies, and with increases in air pollution from fossil fuel combustion and natural disasters like forest fires.
Plus, air pollution is just one external condition that can flip the switch of these inflammatory pathways. Identifying a link between pollution and cancer “has wide ramifications for many other environmental factors that may [play] similar roles,” Weedon says. She hopes that the Crick study and future research in this area will offer some hope for non-smokers frustrated by cancer diagnoses.
Naked Mole Rats Defy Aging. One Scientist Has Dedicated Her Career to Finding Out How.
Rochelle "Shelley" Buffenstein has one of the world's largest, if not the largest, lab-dwelling colonies of the naked mole rat. (No one has done a worldwide tabulation, but she has 4,500 of them.) Buffenstein has spent decades studying the little subterranean-dwelling rodents. Over the years, she and her colleagues have uncovered one surprising discovery after another, which has led them to re-orient the whole field of anti-aging research.
Naked mole rats defy everything we thought we knew about aging. These strange little rodents from arid regions of Africa, such as Kenya, Ethiopia and Somalia, live up to ten times longer than their size would suggest. And unlike virtually every other animal, they don't lose physical or cognitive abilities with age, and even retain their fertility up until the end of life. They appear to have active defenses against the ravages of time, suggesting that aging may not be inevitable. Could these unusual creatures teach humans how to extend life and ameliorate aging?
Buffenstein, who is senior principle investigator at Calico Life Sciences, has dedicated her life to finding out. Her early interest in the animals of what is now Zimbabwe led to her current position as a cutting-edge anti-aging researcher at Calico, the Google-funded health venture launched in 2013. The notoriously secretive company is focused on untangling the mysteries of why animals and people age, and whether there are ways to slow or temporarily arrest the process.
The small, wrinkly animal, which lives in underground burrows in the hot, arid regions of Africa, is hardly the beauty queen of the mammalian kingdom. Furless, buck-toothed and tiny-eyed, the creatures look like they could use a good orthodontist, a protective suit of clothes and possibly, some spectacles to enhance their eyesight. But these rats more than make up for their unimpressive looks with their superlative ability to adapt to some of the most inhospitable conditions on earth.
Based on the usual rule that body size predicts lifespan, naked mole rats shouldn't live that long. After all, similarly-sized rodents like mice have a life expectancy of two years or less. But Buffenstein was one of the first scientists to recognize that naked mole rats live an extraordinarily long time, with her oldest animal approaching 39 years of age. In addition, they never become geriatric in the human sense, defying the common signs of aging — age-related diseases, cognitive decline and even menopause. In fact, the queens, or females that do all the breeding in a bee-like underground colony, remain fertile and give birth to healthy pups up until what would be considered very old age in humans. And the naked mole rat has other curious abilities, such as the ability to endure extreme low-oxygen, or hypoxic, conditions like those they encounter in their underground nests.
"One thing we've learned from these animals is that they stay healthy until the very end."
It's not that the naked mole rat isn't subject to the vicissitudes of life, or the normal wear and tear of biological processes. Over the years, Buffenstein and her colleagues have discovered that, while the process of oxidative stress — thought for 50 years to be the main cause of aging — occurs in the naked mole rat just as in any other animal, its damage does not accumulate with age. Oxidative stress occurs during normal cell metabolism when oxygen "free radicals" with one or more unpaired electrons wreak havoc on large cellular molecules, leaving microscopic debris in their wake that clogs up the gears of healthy cell function. Somehow, naked mole rats have an enhanced ability to clear out the damaged cells and molecules before they can set off the usual chain reaction of cell dysfunction and death, according to a 2013 paper in which Buffenstein is the lead author.
Oxidative stress is not the only factor known to be problematic in aging. Slowly accumulating damage to DNA typically leads to protein malfunction and improper folding. In humans and most other animals, these protein fragments can accumulate in cells and gum up the works. Only not so much in naked mole rats, which are able to maintain normal protein folding throughout their long life. After years of discoveries like these, Buffenstein has gradually reframed her focus from "what goes wrong to produce aging?" to "what goes right in the naked mole rat to help it defy the normal wear and tear of life?" Buffenstein's research suggests that the tiny mammals have a unique ability to somehow clear out damaged protein fragments and other toxic debris before they can cause disease and aging.
How She Got Here
Buffenstein ascribes her initial acquaintance with the naked mole rat to serendipity. Back in 1979, her postgraduate mentor Jenny Jarvis at the University of Cape Town in South Africa kept a small colony of rats in her office while studying the mechanisms that lead to the animals' unusual adaptive capabilities. It was Buffenstein's job to take care of them. Working with Jarvis, Buffenstein focused on understanding their unique adaptations to the extreme conditions of their natural habitat.
They studied the unusual behaviors regulating the rat colonies. For instance, they observed that designated "workers" dig the entire colony's underground tunnels and a single reproducing female breeds with only a small number of males. Buffenstein also examined how these animals are able to survive without the "sunshine hormone" — vitamin D — and their unusual modes of regulating their internal temperatures and converting food into energy. Though classified as mammals, the rodents simply don't conform to the mammalian handbook, having found ingenuous ways to alter their bodies and behavior that is fine-tuned to the scorching heat and aridity of their environment.
To escape the heat, they simply burrow underground and live in elaborate tunnels. To cope with the low-oxygen conditions underground, they slowed their metabolism and learned to live for extended periods of time in such hypoxic conditions that an ordinary animal would quickly suffocate. But it was slowly dawning on Buffenstein that the small creatures were exceptional in additional ways.
When Buffenstein got her first academic position at the University of Witwatersrand in Johannesburg, Jarvis said she could take some of the naked mole rats with her. When she did, Buffenstein noticed that the animals were living far longer than similarly sized rodents. "At that stage, they were about ten years old. Little did I know how long they would eventually show us they could live," she says.
In 1997, after accepting a position at the City College of New York, Buffenstein moved to the U.S. and took her rat colony with her. There she was able to pursue an evolving narrative about the humble naked mole rat that continued to defy expectations. As the years passed, it was becoming more and more evident that her observations could have major implications for aging research. Eventually, she took a position at the Barshop Institute for Aging and Longevity Studies in San Antonio, Texas.
One early observation of Buffenstein's suggested that the species most often used in aging research—mice, roundworms, fruit flies and yeast—have short lifespans and poor defenses against aging. These animals provide important insights into how aging works, and have revealed possible targets for intervention. But they don't show what goes right in apparently non-aging animals like the naked mole rat.
Buffenstein's years of studying the rats has laid the foundation for a whole new perspective in aging research.
"My hypothesis," she says, "is that naked mole rats are very good at removing damaged macromolecules and cells, thereby maintaining homeostasis and cell and tissue function. All the repair pathways examined by us and others in the field point to more efficient repair and more rapid responses to damaging agents." These include things like free radicals and radiation.
Buffenstein’s Legacy
Some researchers today are building on Buffenstein's foundational discoveries to home in on possible anti-aging mechanisms that lead to the extraordinary resilience of naked mole rats. University of Cambridge researcher and co-founder of the institution's Naked Mole-Rat Initiative, Ewan St. John Smith, is studying the animal's resistance to cancer.
In a 2020 paper published in Nature, Smith and his colleagues established that naked mole rats harbor cancer-causing genes, and these genes occasionally create cancer cells. But something in the rats shuts the multiplication process down before the cells can grow out of control and form tumors. Now, scientists want to know what mechanisms, exactly, are at play in preventing the cells from invading healthy tissues. Smith has hypothesized that the answer is somehow embedded in interactions in the cells' microenvironment.
He also thinks the animal's immune system could just be very effective at seeking out and destroying cancer cells. Several current cancer therapies work by boosting the body's immune system so it can attack and eliminate the toxic cells. It's possible that the naked mole rat's immune system naturally goes into hyper-drive when cancer cells appear, enabling it to nip the disease in the bud before tumors can form. A pharmacologist by training, Smith thinks that if there is some chemical mediator in the naked mole rat that supercharges its immune cells, perhaps that mediator can be synthesized in a drug to treat humans for cancer.
The naked mole rat's extreme tolerance to hypoxia could also play a role. "Interestingly," he says, "when cells become cancerous, they also become hypoxic, and naked mole rats are known to be very resistant to hypoxia.
He notes that a form of low-level hypoxia is also present in the bodies and brains of both aged mice and older humans. It's commonly seen in the brains of humans with Alzheimer's disease and other forms of age-related dementia. This suggests that hypoxia in humans — and in other mammals — may have a role to play in Alzheimer's and the aging process itself. Resistance to hypoxia could be why the naked mole rat, in Smith's words, "chugs along quite happily" in conditions that in humans are associated with disease and decline.
Smith cheerfully acknowledges his debt to Buffenstein for laying so much of the groundwork in a field rife with possible implications for anti-aging. "Shelley is amazing," he says. "Naked mole rats have a queen and I always refer to her as the queen of the naked mole rat world." In fact, Buffenstein gave Smith his first colony of rats, which he's since grown to about 150. "Some of them will still be around when I retire," he jokes.
Vera Gorbunova, a professor of biology and oncology at the University of Rochester who studies both longevity and cancer in naked mole rats, credits Buffenstein with getting others to study the animals for anti-aging purposes. Gorbunova believes that "cancer and aging go hand-in-hand" and that longer-lived animals have better, more accurate DNA repair.
Gorbunova is especially interested in the naked mole rat's ability to secrete a superabundance of a "super-sugar" molecule called hyaluronan, a ubiquitous additive to skin creams for its moisturizing effect. Gorbunova and others have observed that the presence of high concentrations of hyaluronan in the naked mole rat's extracellular matrix — the chemical-rich solution between cells — prevents the overcrowding of cells. This, perhaps, could be the key to the animal's ability to stop tumors from forming.
Hyaluronan is also present in the extracellular matrix of humans, but the naked mole rat molecule is more than five times larger than the versions found in humans or mice, and is thought to play a significant part in the animal's DNA repair. But just rubbing a cream containing hyaluronan over your skin won't stop cancer or aging. High concentrations of the substance in the extracellular matrix throughout your body would likely be needed.
Gorbunova notes that the naked mole rat offers a multitude of possibilities that could eventually lead to drugs to slow human aging. "I'm optimistic that there are many different strategies, because the naked mole rat likely has many processes going on that fight aging," she says. "I think that in a relatively short time, there will be bonafide treatments to test in animals. One thing we've learned from these animals is that they stay healthy until the very end."
So if naked mole rats don't become frail with age or develop age-related diseases, what does kill them? The answer, unfortunately, is usually other naked mole rats. Buffenstein has long noted that even though they live in highly cooperative colonies, they can be quite cantankerous when there's a disruption in the hierarchy, a sentiment echoed by Gorbunova. "Sometimes there are periods of peace and quiet, but if something happens to the queen, all hell breaks loose," she says. "If the queen is strong, everybody knows their place," but if the queen dies, the new queen is inevitably decided by violent competition.
To the casual observer, a strange, wrinkly rodent like the naked mole rat might seem to have little to teach us about ourselves, but Buffenstein is confident that her discoveries could have major implications for human longevity research. Today, at Calico's labs in San Francisco, she's focused entirely on the determining how anti-aging defense mechanisms in the rats could lead to similar defenses being stimulated or introduced in humans.
"The million-dollar question is, what are the mechanisms protecting against aging, and can these be translated into therapies to delay or abrogate human aging, too?"
Buffenstein fired up a new generation of scientists with multiple discoveries, especially the fundamental one that naked mole rats are subject to the same wear and tear over time as the rest of us, but somehow manage to reverse it. These days, the trailblazer is at work on untangling the molecular mechanisms involved in the animal's resistance to cardiac aging. On top of everything else, the small creature has a unique ability to fight off the scourge of heart disease, which is the leading cause of death in the industrialized world.
After all, the point is not to extend old age, but to slow down aging itself so that frailty and disability are compressed into a brief period after a long-extended period of vitality. By switching the focus from what goes wrong to mechanisms that defend against aging in the first place, the discoveries of Buffenstein and a new generation of researchers who are building on her groundbreaking research promise to be a driving force in the quest to extend not only life, but healthy, vigorous life in humans.
This article was first published by Leaps.org on June 23, 2021.