An Environmental Scientist and an Educator Highlight Navajo Efforts to Balance Tradition with Scientific Priorities
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
The global pandemic has made it impossible to ignore the stark disparities that exist within American communities. In the past months, journalists and public health experts have reminded us how longstanding systemic health and social inequities have put many people from racial and ethnic minority groups at increased risk of getting sick and dying from COVID-19. Still, the national dialogue noticeably lacks a general awareness of Indigenous people's needs and priorities, especially in the scientific realm.
To learn more about some of the issues facing often-overlooked Indigenous tribal communities, we sought the perspectives of two members of the Navajo Nation: Nonabah Lane, Director of Development of New Mexico Projects at Navajo Power and the founder of Navajo Ethno-Agriculture, a farm that teaches Navajo culture through traditional farming and bilingual education; and Elmer Guy, Ph.D., president of Navajo Technical University, the first university to be established forty years ago on the Navajo Nation that today stands as a premier institution of higher education focusing on a balance between science and technology and traditional culture.
Elmer Guy and Nonabah Lane.
Credits: Navajo Technical University, left, and Diana Levine
Nonabah Lane: The COVID pandemic is really highlighting a lot of ways in which we are lacking, and that's especially true here in our tribal community, because the first thing you need to even address where we are in this science and technology space is the internet. There's a considerable gap between the haves and the have-nots in terms of internet. The Navajo Nation is roughly the size of West Virginia, but we don't have anywhere near the broadband and internet access that other "states" this size would have. Some of the more glaring reasons for this go back to historical policies, lack of funding for infrastructure on tribal lands, and current rights-of-way issues, and a lot of it has to do with the fact that larger corporations aren't as willing to take risks in doing business on a tribal trust land. When you don't have the internet, you don't have access to information, you don't have access to what is going on in the world or science or technology, and you can't keep up with work or school.
Dr. Elmer Guy: That's right. In this pandemic, as we're being forced to go online, I see school buses parked outside for students who don't have internet at home. The buses are equipped with Wi-Fi, so if students can find a way to get to where those buses are parked, they can get on and do their homework. But only then.
Internet has long been an issue, and the Navajo Nation's telecommunications department created a cyber task force that we at Navajo Technical University (NTU) are members of. One of the things we recently did was to petition the FCC for special temporary authority of an EBS [Educational Broadband Services] 2.5-GHz spectrum that was available but not being used. So now we have that and we're using it to set up hot spots for students to connect. We're also working with the four internet-service companies: Cellular One, Navajo Tribal Utility Authority, Sacred Wind, and Frontier. As Nonabah was saying, the Navajo Nation is quite large and has five agencies. NTU is in the eastern agency, but Navajo Tribal Utility Authority doesn't have a footprint here, so we partnered with Sacred Wind as well as Frontier to broaden our bandwidth.
We've also been collaborating with the Navajo Cyber Team on developing a Navajo Nation broadband policy, and we're almost done with that. The Navajo Nation received some CARES [Coronavirus Aid, Relief, and Economic Security] funding, and part of that is being used to address broadband. One of the things we're trying to do is see if tribal colleges can qualify for E-Rates [educational rates], since schools are eligible for E-Rates. And so some of the schools are getting connected.
What's also happening is that the Navajo Nation is trying to expand water lines to families so that they have water to wash their hands during this pandemic. We're recommending that if they're going to dig for the water lines, they might as well lay down conduits, too, so that later we will be able to install fiber as well. We happen to specialize in wireless technology here at NTU, and that is making a significant impact. In the past, it used to be about point-to-point, and when you're trying to serve a community in the valley, you'd have to find a water tank or something high and then get down and into that community from there. But with newer technology, they can bend now into those valleys. We keep reminding the state that they need to address rural communities. We've reached out to congressional members to push them to address broadband issues with Indian communities, and there are a couple of bills out now addressing that.
Of course, there are other things we're looking at in terms of scientific priorities: artificial intelligence, robotics, and climate change. We're in a high-desert environment, and the sand dunes are increasing because of overgrazing and other factors. Water sources are limited, and air pollution doesn't really help, so robotics could be promising. For example, we're looking at the water-filtering systems for wells so that both animals and humans have access to safe water. We're beginning to see the reach of technology in places like grocery stores, where people can check themselves out without the need for cashiers. So we try to look ahead and project what kinds of jobs will and will not be needed on the Navajo Nation, then have our faculty think about ways of adjusting the curriculum to stay in line with where the world is headed.
"One of the biggest challenges for us is how we make sure there's a connection between the students who want to go into science and how they can continue to contribute to Navajo communities—to their parents' and grandparents' way of life."
NL: Since we're talking about the internet and A.I., I think one of the key issues that isn't addressed in tribal communities is data: data security, privacy, and, ultimately, ownership. It's such a gray area. Take this pandemic, for instance, and the numbers and the data that's being collected: who's taking all of this information out of our communities and who's accounting for it? It's an important component being extracted seemingly covertly. Our tribal communities don't necessarily understand how valuable it is to keep that data within our communities.
I know there are various data holders who are not Navajo who have studied Navajo people and our environment, from soil samples to diabetes rates, and it's just not information we fully have access to as a population—our own information. It's critical to get everyone on the same page and to understand the importance of that.
There's a water project I'm working on that came out of the Gold King Mine waste-water spill of 2015, which was a major environmental catastrophe in New Mexico that affected the run-off from the San Juan Mountains. The water contamination really hurt agriculture, especially Navajo farmers on the San Juan River. We still feel it, even if the pandemic has kind of overshadowed it, and before the pandemic, my organization, Navajo Ethno-Agriculture, adopted a lot of the hard-science data that was taken by the University of Arizona. We've been working with New Mexico State University in continuing to collect and share data with the community in order to build back confidence with Navajo consumers about our farm produce. We have an ongoing partnership with New Mexico State University where they come out and do soil testing, and Navajo Preparatory School students are developing a curriculum around this as well. The point is to get easy-to-use, low-cost technology so that farmers can do this testing on their own and not have to wait for and rely on a university or the government agencies to come out and test it. This initiative would not have been possible without the support of the MIT Solve Indigenous Communities Fellowship.
Of course, you're always going to have the people in the community who don't believe in science and don't believe that the water is, in fact, okay, but it's essential that we have that scientific data. It's about empowering farmers to be able to relay that message as well—and finding a bridge between our longstanding traditions and modern science. A lot of the farming among the Navajo is deeply traditional to this region, and, as a culture, we're focused on the traditional aspects of the food. That's really why we felt like it was important to be proactive about this—because if you lose one more generation of farmers who don't produce these heritage foods, it's not just your food, it's your whole culture and way of life—your heritage—that could be gone. So it's important to preserve that tradition, but also alongside Western science—and data is critical.
EG: Nonabah is right about tradition, and I think one of the biggest challenges for us is how we make sure there's a connection between the students who want to go into science and how they can continue to contribute to Navajo communities—to their parents' and grandparents' way of life. A lot of the time, you have to create those opportunities. For example, we're trying to develop an environmental laboratory at one of our sites in Chinle, Arizona, where we want to be able to test the water, soil, air, uranium, etc. We have people who can run that facility mainly to help with the uranium mine clean-up. There are over 500 abandoned uranium mines, and what might usually happen is that funds would become available and outside entities would get those grants and they'd come in and do the work. Then, as soon as the grant is up, they leave and everything disappears, but the problem remains. It's these kinds of situations where we say, Why can't we do that ourselves? And the only way is to train and prepare engineers ourselves, from our community.
A lot of our students intern with the U.S. Army and Air Force Research Labs Faculty Fellowship or with Boeing or NASA, and, when they graduate, those groups grab them for themselves. So I keep asking the Navajo Nation where they are in all of this. A lot of times we are the ones who create the barriers that only end up hurting us. When the Navajo Nation puts out job vacancies, they require candidates to have so many years of experience, and our students don't qualify. There is a tremendous need for our graduates, but everybody except the Navajo Nation ends up hiring them.
NL: As Dr. Guy says, creating opportunity is so important. My family's non-profit organization, Navajo Ethno-Agriculture, actually came about for that particular reason. We had people coming in and doing workshops and telling us how we should plant and do this or that. It was absurd—how can you come from Washington State and tell us how to plant when you don't know what native crops have been planted in our home region for centuries? And so, because of my family's background in the sciences and the traditional upbringing we all share, we built this program ourselves. We incorporate the science into our program, and we encourage students to pursue a career in science, while trying to create those job opportunities for them here. I find that more than 75% of the Navajo students I interact with—whether in high school or college—want to come back home. They just don't have the work or career opportunities to do so.
EG: NTU also has a partnership with the Navajo Nation's economic department, and we run their business incubator program. We encourage people to go into businesses here on Navajo. One of the challenges is that, even though the Navajo Nation may be the size of West Virginia, we don't own the land. So you have to deal with leases or homesite land-use permits, and it's daunting. We streamline that process and help people put together business plans, set up payroll taxes, figure out marketing strategies, and so forth.
One of the challenges is resistance, and that's something you have to deal with. For example, when I was pushing my faculty to develop an engineering degree, no one could understand why. So I told them about the national goal—that the United States has set a goal for itself that by the year 2026 or whenever, it wants to have 100,000 engineers. But what about the Navajo Nation's goals? We don't have a goal, but we should, and you have to push people to get there. Eventually everyone sees the benefits of these kinds of decisions.
NL: I also believe we have to encourage the entrepreneurial mindset: If something doesn't exist here already, then ask yourself what's needed and create it. This is our community, and we can make that change. I'm really biased toward starting your own thing because that's what I do. Before COVID-19 hit, I was developing a water lab that would stand closer to the Southern Ute Reservation so that it could be at the opening to the tributaries that run into the Colorado River and downstream to the tribes. I wanted that specific site because it would allow us to monitor the water that's a priority for tribes—because everyone else already has their own resources. And all of the water scientists involved were Navajo. If people like us don't take the initiative for these kinds of projects, the absolute wrong person is going to do it, without understanding the community.
EG: Whether it's the environment or water or some other scientific need, it's important that we remember to develop the smaller steps necessary for achieving any goal. For example, if we need veterinarians, then we have to ask what the steps are to get us to that point. A veterinary or medical school probably won't happen at NTU, but we could begin by identifying and building the steps needed to get there. We did this by starting a veterinary technician program and then added an animal science degree and then a biology degree, which is designed somewhat as a pre-medical degree, so that students can go into either medicine or veterinary science. We know we can't always make a leap right away, but we can build the pathways that get us there.
NL: For everything we've been discussing, I think it's really important to understand that we're not talking for the whole of the Navajo Nation; the Navajo Nation is large, and its culture is regional. There are different priorities in different communities. Where I live, we have abundant water around us, so that is not a need, but if you go 100 miles south, there's no water infrastructure whatsoever. And there are other issues, from coal and oil and gas extraction, to the uranium issue, which are regional. Some people live close to large health facilities while rural communities only have access to a clinic. NTU is resource-abundant in terms of having that academic outlet for students while people on the other side of the reservation may not have that. I'm always very clear about this. I may be speaking from a tribal nation, I may be speaking from experience, but I'm not speaking for the Navajo Nation as a whole, and I'm not speaking for tribal communities as a whole. Yes, we are a community, and we can expose a greater picture in our area of expertise, but there are definitely different areas that have individual needs.
Still, I do believe in the promise of what the future can hold for us in terms of both science and tradition. The two can complement each other and are not at odds, even though we tend to think of sustainability in scientific terms. And yes, science can help us achieve sustainability through things like solar tech, health innovations, and natural sciences. But I'm talking about sustainability overall and of the Earth: sustainability of water, energy, and agriculture, but also of human capacity and Navajo culture.
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
New implants let paraplegics surf the web and play computer games
When I greeted Rodney Gorham, age 63, in an online chat session, he replied within seconds: “My pleasure.”
“Are you moving parts of your body as you type?” I asked.
This time, his response came about five minutes later: “I position the cursor with the eye tracking and select the same with moving my ankles.” Gorham, a former sales representative from Melbourne, Australia, living with amyotrophic lateral sclerosis, or ALS, a rare form of Lou Gehrig’s disease that impairs the brain’s nerve cells and the spinal cord, limiting the ability to move. ALS essentially “locks” a person inside their own body. Gorham is conversing with me by typing with his mind only–no fingers in between his brain and his computer.
The brain-computer interface enabling this feat is called the Stentrode. It's the brainchild of Synchron, a company backed by Amazon’s Jeff Bezos and Microsoft cofounder Bill Gates. After Gorham’s neurologist recommended that he try it, he became one of the first volunteers to have an 8mm stent, laced with small electrodes, implanted into his jugular vein and guided by a surgeon into a blood vessel near the part of his brain that controls movement.
After arriving at their destination, these tiny sensors can detect neural activity. They relay these messages through a small receiver implanted under the skin to a computer, which then translates the information into words. This minimally invasive surgery takes a day and is painless, according to Gorham. Recovery time is typically short, about two days.
When a paralyzed patient thinks about trying to move their arms or legs, the motor cortex will fire patterns that are specific to the patient’s thoughts.
When a paralyzed patient such as Gorham thinks about trying to move their arms or legs, the motor cortex will fire patterns that are specific to the patient’s thoughts. This pattern is detected by the Stentrode and relayed to a computer that learns to associate this pattern with the patient’s physical movements. The computer recognizes thoughts about kicking, making a fist and other movements as signals for clicking a mouse or pushing certain letters on a keyboard. An additional eye-tracking device controls the movement of the computer cursor.
The process works on a letter by letter basis. That’s why longer and more nuanced responses often involve some trial and error. “I have been using this for about two years, and I enjoy the sessions,” Gorham typed during our chat session. Zafar Faraz, field clinical engineer at Synchron, sat next to Gorham, providing help when required. Gorham had suffered without internet access, but now he looks forward to surfing the web and playing video games.
Gorham, age 63, has been enjoying Stentrode sessions for about two years.
Rodeny Dekker
The BCI revolution
In the summer of 2021, Synchron became the first company to receive the FDA’s Investigational Device Exemption, which allows research trials on the Stentrode in human patients. This past summer, the company, together with scientists from Icahn School of Medicine at Mount Sinai and the Neurology and Neurosurgery Department at Utrecht University, published a paper offering a framework for how to develop BCIs for patients with severe paralysis – those who can't use their upper limbs to type or use digital devices.
Three months ago, Synchron announced the enrollment of six patients in a study called COMMAND based in the U.S. The company will seek approval next year from the FDA to make the Stentrode available for sale commercially. Meanwhile, other companies are making progress in the field of BCIs. In August, Neuralink announced a $280 million financing round, the biggest fundraiser yet in the field. Last December, Synchron announced a $75 million financing round. “One thing I can promise you, in five years from now, we’re not going to be where we are today. We're going to be in a very different place,” says Elad I. Levy, professor of neurosurgery and radiology at State University of New York in Buffalo.
The risk of hacking exists, always. Cybercriminals, for example, might steal sensitive personal data for financial reasons, blackmailing, or to spread malware to other connected devices while extremist groups could potentially hack BCIs to manipulate individuals into supporting their causes or carrying out actions on their behalf.
“The prospect of bestowing individuals with paralysis a renewed avenue for communication and motor functionality is a step forward in neurotech,” says Hayley Nelson, a neuroscientist and founder of The Academy of Cognitive and Behavioral Neuroscience. “It is an exciting breakthrough in a world of devastating, scary diseases,” says Neil McArthur, a professor of philosophy and director of the Centre for Professional and Applied Ethics at the University of Manitoba. “To connect with the world when you are trapped inside your body is incredible.”
While the benefits for the paraplegic community are promising, the Stentrode’s long-term effectiveness and overall impact needs more research on safety. “Potential risks like inflammation, damage to neural tissue, or unexpected shifts in synaptic transmission due to the implant warrant thorough exploration,” Nelson says.
There are also concens about data privacy concerns and the policies of companies to safeguard information processed through BCIs. “Often, Big Tech is ahead of the regulators because the latter didn’t envisage such a turn of events...and companies take advantage of the lack of legal framework to push forward,” McArthur says. Hacking is another risk. Cybercriminals could steal sensitive personal data for financial reasons, blackmailing, or to spread malware to other connected devices. Extremist groups could potentially hack BCIs to manipulate individuals into supporting their causes or carrying out actions on their behalf.
“We have to protect patient identity, patient safety and patient integrity,” Levy says. “In the same way that we protect our phones or computers from hackers, we have to stay ahead with anti-hacking software.” Even so, Levy thinks the anticipated benefits for the quadriplegic community outweigh the potential risks. “We are on the precipice of an amazing technology. In the future, we would be able to connect patients to peripheral devices that enhance their quality of life.”
In the near future, the Stentrode could enable patients to use the Stentrode to activate their wheelchairs, iPods or voice modulators. Synchron's focus is on using its BCI to help patients with significant mobility restrictions—not to enhance the lives of healthy people without any illnesses. Levy says we are not prepared for the implications of endowing people with superpowers.
I wondered what Gorham thought about that. “Pardon my question, but do you feel like you have sort of transcended human nature, being the first in a big line of cybernetic people doing marvelous things with their mind only?” was my last question to Gorham.
A slight smile formed on his lips. In less than a minute, he typed: “I do a little.”
Leading XPRIZE Healthspan and Beating Negativity with Dr. Peter Diamandis
A new competition by the XPRIZE Foundation is offering $101 million to researchers who discover therapies that give a boost to people aged 65-80 so their bodies perform more like when they were middle-aged.
For today’s podcast episode, I talked with Dr. Peter Diamandis, XPRIZE’s founder and executive chairman. Under Peter’s leadership, XPRIZE has launched 27 previous competitions with over $300 million in prize purses. The latest contest aims to enhance healthspan, or the period of life when older people can play with their grandkids without any restriction, disability or disease. Such breakthroughs could help prevent chronic diseases that are closely linked to aging. These illnesses are costly to manage and threaten to overwhelm the healthcare system, as the number of Americans over age 65 is rising fast.
In this competition, called XPRIZE Healthspan, multiple awards are available, depending on what’s achieved, with support from the nonprofit Hevolution Foundation and Chip Wilson, the founder of Lululemon and nonprofit SOLVE FSHD. The biggest prize, $81 million, is for improvements in cognition, muscle and immunity by 20 years. An improvement of 15 years will net $71 million, and 10 years will net $61 million.
In our conversation for this episode, Peter talks about his plans for XPRIZE Healthspan and why exponential technologies make the current era - even with all of its challenges - the most exciting time in human history. We discuss the best mental outlook that supports a person in becoming truly innovative, as well as the downsides of too much risk aversion. We talk about how to overcome the negativity bias in ourselves and in mainstream media, how Peter has shifted his own mindset to become more positive over the years, how to inspire a culture of innovation, Peter’s personal recommendations for lifestyle strategies to live longer and healthier, the innovations we can expect in various fields by 2030, the future of education and the importance of democratizing tech and innovation.
In addition to Peter’s pioneering leadership of XPRIZE, he is also the Executive Founder of Singularity University. In 2014, he was named by Fortune as one of the “World’s 50 Greatest Leaders.” As an entrepreneur, he’s started over 25 companies in the areas of health-tech, space, venture capital and education. He’s Co-founder and Vice-Chairman of two public companies, Celularity and Vaxxinity, plus being Co-founder & Chairman of Fountain Life, a fully-integrated platform delivering predictive, preventative, personalized and data-driven health. He also serves as Co-founder of BOLD Capital Partners, a venture fund with a half-billion dollars under management being invested in exponential technologies and longevity companies. Peter is a New York Times Bestselling author of four books, noted during our conversation and in the show notes of this episode. He has degrees in molecular genetics and aerospace engineering from MIT and holds an M.D. from Harvard Medical School.
Show links
- Peter Diamandis bio
- New XPRIZE Healthspan
- Peter Diamandis books
- 27 XPRIZE competitions and counting
- Life Force by Peter Diamandis and Tony Robbins
- Peter Diamandis Twitter
- Longevity Insider newsletter – AI identifies the news
- Peter Diamandis Longevity Handbook
- Hevolution funding for longevity
XPRIZE Founder Peter Diamandis speaks with Mehmoud Khan, CEO of Hevolution Foundation, at the launch of XPRIZE Healthspan.
Hevolution Foundation