Don’t fear AI, fear power-hungry humans
Story by Big Think
We live in strange times, when the technology we depend on the most is also that which we fear the most. We celebrate cutting-edge achievements even as we recoil in fear at how they could be used to hurt us. From genetic engineering and AI to nuclear technology and nanobots, the list of awe-inspiring, fast-developing technologies is long.
However, this fear of the machine is not as new as it may seem. Technology has a longstanding alliance with power and the state. The dark side of human history can be told as a series of wars whose victors are often those with the most advanced technology. (There are exceptions, of course.) Science, and its technological offspring, follows the money.
This fear of the machine seems to be misplaced. The machine has no intent: only its maker does. The fear of the machine is, in essence, the fear we have of each other — of what we are capable of doing to one another.
How AI changes things
Sure, you would reply, but AI changes everything. With artificial intelligence, the machine itself will develop some sort of autonomy, however ill-defined. It will have a will of its own. And this will, if it reflects anything that seems human, will not be benevolent. With AI, the claim goes, the machine will somehow know what it must do to get rid of us. It will threaten us as a species.
Well, this fear is also not new. Mary Shelley wrote Frankenstein in 1818 to warn us of what science could do if it served the wrong calling. In the case of her novel, Dr. Frankenstein’s call was to win the battle against death — to reverse the course of nature. Granted, any cure of an illness interferes with the normal workings of nature, yet we are justly proud of having developed cures for our ailments, prolonging life and increasing its quality. Science can achieve nothing more noble. What messes things up is when the pursuit of good is confused with that of power. In this distorted scale, the more powerful the better. The ultimate goal is to be as powerful as gods — masters of time, of life and death.
Should countries create a World Mind Organization that controls the technologies that develop AI?
Back to AI, there is no doubt the technology will help us tremendously. We will have better medical diagnostics, better traffic control, better bridge designs, and better pedagogical animations to teach in the classroom and virtually. But we will also have better winnings in the stock market, better war strategies, and better soldiers and remote ways of killing. This grants real power to those who control the best technologies. It increases the take of the winners of wars — those fought with weapons, and those fought with money.
A story as old as civilization
The question is how to move forward. This is where things get interesting and complicated. We hear over and over again that there is an urgent need for safeguards, for controls and legislation to deal with the AI revolution. Great. But if these machines are essentially functioning in a semi-black box of self-teaching neural nets, how exactly are we going to make safeguards that are sure to remain effective? How are we to ensure that the AI, with its unlimited ability to gather data, will not come up with new ways to bypass our safeguards, the same way that people break into safes?
The second question is that of global control. As I wrote before, overseeing new technology is complex. Should countries create a World Mind Organization that controls the technologies that develop AI? If so, how do we organize this planet-wide governing board? Who should be a part of its governing structure? What mechanisms will ensure that governments and private companies do not secretly break the rules, especially when to do so would put the most advanced weapons in the hands of the rule breakers? They will need those, after all, if other actors break the rules as well.
As before, the countries with the best scientists and engineers will have a great advantage. A new international détente will emerge in the molds of the nuclear détente of the Cold War. Again, we will fear destructive technology falling into the wrong hands. This can happen easily. AI machines will not need to be built at an industrial scale, as nuclear capabilities were, and AI-based terrorism will be a force to reckon with.
So here we are, afraid of our own technology all over again.
What is missing from this picture? It continues to illustrate the same destructive pattern of greed and power that has defined so much of our civilization. The failure it shows is moral, and only we can change it. We define civilization by the accumulation of wealth, and this worldview is killing us. The project of civilization we invented has become self-cannibalizing. As long as we do not see this, and we keep on following the same route we have trodden for the past 10,000 years, it will be very hard to legislate the technology to come and to ensure such legislation is followed. Unless, of course, AI helps us become better humans, perhaps by teaching us how stupid we have been for so long. This sounds far-fetched, given who this AI will be serving. But one can always hope.
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
With a deadly pandemic sweeping the planet, many are questioning the comfort and security we have taken for granted in the modern world.
A century ago, when an influenza pandemic struck, we barely knew what viruses were.
More than a century after the germ theory, we are still at the mercy of a microbe we can neither treat, nor control, nor immunize against. Even more discouraging is that technology has in some ways exacerbated the problem: cars and air travel allow a new disease to quickly encompass the globe.
Some say we have grown complacent, that we falsely assume the triumphs of the past ensure a happy and prosperous future, that we are oblivious to the possibility of unpredictable "black swan" events that could cause our destruction. Some have begun to lose confidence in progress itself, and despair of the future.
But the new coronavirus should not defeat our spirit—if anything, it should spur us to redouble our efforts, both in the science and technology of medicine, and more broadly in the advance of industry. Because the best way to protect ourselves against future disasters is more progress, faster.
Science and technology have overall made us much better able to deal with disease. In the developed world, we have already tamed most categories of infectious disease. Most bacterial infections, such as tuberculosis or bacterial pneumonia, are cured with antibiotics. Waterborne diseases such as cholera are eliminated through sanitation; insect-borne ones such as malaria through pest control. Those that are not contagious until symptoms appear, such as SARS, can be handled through case isolation and contact tracing. For the rest, such as smallpox, polio, and measles, we develop vaccines, given enough time. COVID-19 could start a pandemic only because it fits a narrow category: a new, viral disease that is highly contagious via pre-symptomatic droplet/aerosol transmission, and that has a high mortality rate compared to seasonal influenza.
A century ago, when an influenza pandemic struck, we barely knew what viruses were; no one had ever seen one. Today we know what COVID-19 is down to its exact genome; in fact, we have sequenced thousands of COVID-19 genomes, and can track its history and its spread through their mutations. We can create vaccines faster today, too: where we once developed them in live animals, we now use cell cultures; where we once had to weaken or inactivate the virus itself, we can now produce vaccines based on the virus's proteins. And even though we don't yet have a treatment, the last century-plus of pharmaceutical research has given us a vast catalog of candidate drugs, already proven safe. Even now, over 50 candidate vaccines and almost 100 candidate treatments are in the research pipeline.
It's not just our knowledge that has advanced, but our methods. When smallpox raged in the 1700s, even the idea of calculating a case-fatality rate was an innovation. When the polio vaccine was trialled in the 1950s, the use of placebo-controlled trials was still controversial. The crucial measure of contagiousness, "R0", was not developed in epidemiology until the 1980s. And today, all of these methods are made orders of magnitude faster and more powerful by statistical and data visualization software.
If you're seeking to avoid COVID-19, the hand sanitizer gel you carry in a pocket or purse did not exist until the 1960s. If you start to show symptoms, the pulse oximeter that tests your blood oxygenation was not developed until the 1970s. If your case worsens, the mechanical ventilator that keeps you alive was invented in the 1950s—in fact, no form of artificial respiration was widely available until the "iron lung" used to treat polio patients in the 1930s. Even the modern emergency medical system did not exist until recently: if during the 1918 flu pandemic you became seriously ill, there was no 911 hotline to call, and any ambulance that showed up would likely have been a modified van or hearse, with no equipment or trained staff.
As many of us "shelter in place", we are far more able to communicate and collaborate, to maintain some semblance of normal life, than we ever would have been. To compare again to 1918: long-distance telephone service barely existed at that time, and only about a third of homes in the US even had electricity; now we can videoconference over Zoom and Skype. And the enormous selection and availability provided by online retail and food delivery have kept us stocked and fed, even when we don't want to venture out to the store.
Let the virus push us to redouble our efforts to make scientific, technological, and industrial progress on all fronts.
"Black swan" calamities can strike without warning at any time. Indeed, humanity has always been subject to them—drought and frost, fire and flood, war and plague. But we are better equipped now to deal with them than ever before. And the more progress we make, the better prepared we'll be for the next one. The accumulation of knowledge, technology, industrial infrastructure, and surplus wealth is the best buffer against any shock—whether a viral pandemic, a nuclear war, or an asteroid impact. In fact, the more worried we are about future crises, the more energetically we should accelerate science, technology and industry.
In this sense, we have grown complacent. We take the modern world for granted, so much so that some question whether further progress is even still needed. The new virus proves how much we do need it, and how far we still have to go. Imagine how different things would be if we had broad-spectrum antiviral drugs, or a way to enhance the immune system to react faster to infection, or a way to detect infection even before symptoms appear. These technologies may seem to belong to a Star Trek future—but so, at one time, did cell phones.
The virus reminds us that nature is indifferent to us, leaving us to fend entirely for ourselves. As we go to war against it, let us not take the need for such a war as reason for despair. Instead, let it push us to redouble our efforts to make scientific, technological, and industrial progress on all fronts. No matter the odds, applied intelligence is our best weapon against disaster.