Scientists Are Devising Clever Solutions to Feed Astronauts on Mars Space Flights

Scientists Are Devising Clever Solutions to Feed Astronauts on Mars Space Flights

Astronaut and Expedition 64 Flight Engineer Soichi Noguchi of the Japan Aerospace Exploration Agency displays Extra Dwarf Pak Choi plants growing aboard the International Space Station. The plants were grown for the Veggie study which is exploring space agriculture as a way to sustain astronauts on future missions to the Moon or Mars.

Johnson Space Center/NASA

Astronauts at the International Space Station today depend on pre-packaged, freeze-dried food, plus some fresh produce thanks to regular resupply missions. This supply chain, however, will not be available on trips further out, such as the moon or Mars. So what are astronauts on long missions going to eat?

Going by the options available now, says Christel Paille, an engineer at the European Space Agency, a lunar expedition is likely to have only dehydrated foods. “So no more fresh product, and a limited amount of already hydrated product in cans.”

For the Mars mission, the situation is a bit more complex, she says. Prepackaged food could still constitute most of their food, “but combined with [on site] production of certain food products…to get them fresh.” A Mars mission isn’t right around the corner, but scientists are currently working on solutions for how to feed those astronauts. A number of boundary-pushing efforts are now underway.

Keep Reading Keep Reading
Payal Dhar
Payal is a writer based in New Delhi who has been covering science, technology, and society since 1998.
With U.S. infrastructure crumbling, an honor oath summons engineers to do no harm

When graduating college this month, many North American engineering students will take a special pledge, with a history dating back to 1925.

Adobe Stock

This spring, just like any other year, thousands of young North American engineers will graduate from their respective colleges ready to start erecting buildings, assembling machinery, and programming software, among other things. But before they take on these complex and important tasks, many of them will recite a special vow stating their ethical obligations to society, not unlike the physicians who take their Hippocratic Oath, affirming their ethos toward the patients they would treat. At the end of the ceremony, the engineers receive an iron ring, as a reminder of their promise to the millions of people their work will serve.

The ceremony isn’t just another graduation formality. As a profession, engineering has ethical weight. Moreover, engineering mistakes can be even more deadly than medical ones. A doctor’s error may cost a patient their life. But an engineering blunder may bring down a plane or crumble a building, resulting in many more fatalities. When larger projects—such as fracking, deep-sea mining or building nuclear reactors—malfunction and backfire, they can cause global disasters, afflicting millions. A vow that reminds an engineer that their work directly affects humankind and their planet is no less important than a medical oath that summons one to do no harm.

Keep Reading Keep Reading
Patrick Beach
Patrick Beach lives and writes in Cincinnati, Ohio, but he’s originally from Idaho, with stops between in New York, Vermont, South Carolina, Missouri and Texas. He earned a Ph.D. in Philosophy from Syracuse University. You can find him on Twitter @ThinkRunPat and Facebook as patrick.beach.98
Movie still from the 1966 film "Fantastic Voyage" depicting a shrunken submarine amid red blood cells

A movie still from the 1966 film "Fantastic Voyage"

20th Century Fox

In the 1966 movie "Fantastic Voyage," actress Raquel Welch and her submarine were shrunk to the size of a cell in order to eliminate a blood clot in a scientist's brain. Now, 55 years later, the scenario is becoming closer to reality.

California-based startup Bionaut Labs has developed a nanobot about the size of a grain of rice that's designed to transport medication to the exact location in the body where it's needed. If you think about it, the conventional way to deliver medicine makes little sense: A painkiller affects the entire body instead of just the arm that's hurting, and chemotherapy is flushed through all the veins instead of precisely targeting the tumor.

Keep Reading Keep Reading
Michaela Haas
Michaela Haas, PhD, is an award-winning reporter and author, most recently of Bouncing Forward: The Art and Science of Cultivating Resilience (Atria). Her work has been published in the New York Times, Mother Jones, the Huffington Post, and numerous other media. Find her at www.MichaelaHaas.com and Twitter @MichaelaHaas!