Bad Actors Getting Your Health Data Is the FBI’s Latest Worry
In February 2015, the health insurer Anthem revealed that criminal hackers had gained access to the company's servers, exposing the personal information of nearly 79 million patients. It's the largest known healthcare breach in history.
FBI agents worry that the vast amounts of healthcare data being generated for precision medicine efforts could leave the U.S. vulnerable to cyber and biological attacks.
That year, the data of millions more would be compromised in one cyberattack after another on American insurers and other healthcare organizations. In fact, for the past several years, the number of reported data breaches has increased each year, from 199 in 2010 to 344 in 2017, according to a September 2018 analysis in the Journal of the American Medical Association.
The FBI's Edward You sees this as a worrying trend. He says hackers aren't just interested in your social security or credit card number. They're increasingly interested in stealing your medical information. Hackers can currently use this information to make fake identities, file fraudulent insurance claims, and order and sell expensive drugs and medical equipment. But beyond that, a new kind of cybersecurity threat is around the corner.
Mr. You and others worry that the vast amounts of healthcare data being generated for precision medicine efforts could leave the U.S. vulnerable to cyber and biological attacks. In the wrong hands, this data could be used to exploit or extort an individual, discriminate against certain groups of people, make targeted bioweapons, or give another country an economic advantage.
Precision medicine, of course, is the idea that medical treatments can be tailored to individuals based on their genetics, environment, lifestyle or other traits. But to do that requires collecting and analyzing huge quantities of health data from diverse populations. One research effort, called All of Us, launched by the U.S. National Institutes of Health last year, aims to collect genomic and other healthcare data from one million participants with the goal of advancing personalized medical care.
Other initiatives are underway by academic institutions and healthcare organizations. Electronic medical records, genetic tests, wearable health trackers, mobile apps, and social media are all sources of valuable healthcare data that a bad actor could potentially use to learn more about an individual or group of people.
"When you aggregate all of that data together, that becomes a very powerful profile of who you are," Mr. You says.
A supervisory special agent in the biological countermeasures unit within the FBI's weapons of mass destruction directorate, it's Mr. You's job to imagine worst-case bioterror scenarios and figure out how to prevent and prepare for them.
That used to mean focusing on threats like anthrax, Ebola, and smallpox—pathogens that could be used to intentionally infect people—"basically the dangerous bugs," as he puts it. In recent years, advances in gene editing and synthetic biology have given rise to fears that rogue, or even well-intentioned, scientists could create a virulent virus that's intentionally, or unintentionally, released outside the lab.
"If a foreign source, especially a criminal one, has your biological information, then they might have some particular insights into what your future medical needs might be and exploit that."
While Mr. You is still tracking those threats, he's been traveling around the country talking to scientists, lawyers, software engineers, cyber security professionals, government officials and CEOs about new security threats—those posed by genetic and other biological data.
Emerging threats
Mr. You says one possible situation he can imagine is the potential for nefarious actors to use an individual's sensitive medical information to extort or blackmail that person.
"If a foreign source, especially a criminal one, has your biological information, then they might have some particular insights into what your future medical needs might be and exploit that," he says. For instance, "what happens if you have a singular medical condition and an outside entity says they have a treatment for your condition?" You could get talked into paying a huge sum of money for a treatment that ends up being bogus.
Or what if hackers got a hold of a politician or high-profile CEO's health records? Say that person had a disease-causing genetic mutation that could affect their ability to carry out their job in the future and hackers threatened to expose that information. These scenarios may seem far-fetched, but Mr. You thinks they're becoming increasingly plausible.
On a wider scale, Kavita Berger, a scientist at Gryphon Scientific, a Washington, D.C.-area life sciences consulting firm, worries that data from different populations could be used to discriminate against certain groups of people, like minorities and immigrants.
For instance, the advocacy group Human Rights Watch in 2017 flagged a concerning trend in China's Xinjiang territory, a region with a history of government repression. Police there had purchased 12 DNA sequencers and were collecting and cataloging DNA samples from people to build a national database.
"The concern is that this particular province has a huge population of the Muslim minority in China," Ms. Berger says. "Now they have a really huge database of genetic sequences. You have to ask, why does a police station need 12 next-generation sequencers?"
Also alarming is the potential that large amounts of data from different groups of people could lead to customized bioweapons if that data ends up in the wrong hands.
Eleonore Pauwels, a research fellow on emerging cybertechnologies at United Nations University's Centre for Policy Research, says new insights gained from genomic and other data will give scientists a better understanding of how diseases occur and why certain people are more susceptible to certain diseases.
"As you get more and more knowledge about the genomic picture and how the microbiome and the immune system of different populations function, you could get a much deeper understanding about how you could target different populations for treatment but also how you could eventually target them with different forms of bioagents," Ms. Pauwels says.
Economic competitiveness
Another reason hackers might want to gain access to large genomic and other healthcare datasets is to give their country a leg up economically. Many large cyber-attacks on U.S. healthcare organizations have been tied to Chinese hacking groups.
"This is a biological space race and we just haven't woken up to the fact that we're in this race."
"It's becoming clear that China is increasingly interested in getting access to massive data sets that come from different countries," Ms. Pauwels says.
A year after U.S. President Barack Obama conceived of the Precision Medicine Initiative in 2015—later renamed All of Us—China followed suit, announcing the launch of a 15-year, $9 billion precision health effort aimed at turning China into a global leader in genomics.
Chinese genomics companies, too, are expanding their reach outside of Asia. One company, WuXi NextCODE, which has offices in Shanghai, Reykjavik, and Cambridge, Massachusetts, has built an extensive library of genomes from the U.S., China and Iceland, and is now setting its sights on Ireland.
Another Chinese company, BGI, has partnered with Children's Hospital of Philadelphia and Sinai Health System in Toronto, and also formed a collaboration with the Smithsonian Institute to sequence all species on the planet. BGI has built its own advanced genomic sequencing machines to compete with U.S.-based Illumina.
Mr. You says having access to all this data could lead to major breakthroughs in healthcare, such as new blockbuster drugs. "Whoever has the largest, most diverse dataset is truly going to win the day and come up with something very profitable," he says.
Some direct-to-consumer genetic testing companies with offices in the U.S., like Dante Labs, also use BGI to process customers' DNA.
Experts worry that China could race ahead the U.S. in precision medicine because of Chinese laws governing data sharing. Currently, China prohibits the exportation of genetic data without explicit permission from the government. Mr. You says this creates an asymmetry in data sharing between the U.S. and China.
"This is a biological space race and we just haven't woken up to the fact that we're in this race," he said in January at an American Society for Microbiology conference in Washington, D.C. "We don't have access to their data. There is absolutely no reciprocity."
Protecting your data
While Mr. You has been stressing the importance of data security to anyone who will listen, the National Academies of Sciences, Engineering, and Medicine, which makes scientific and policy recommendations on issues of national importance, has commissioned a study on "safeguarding the bioeconomy."
In the meantime, Ms. Berger says organizations that deal with people's health data should assess their security risks and identify potential vulnerabilities in their systems.
As for what individuals can do to protect themselves, she urges people to think about the different ways they're sharing healthcare data—such as via mobile health apps and wearables.
"Ask yourself, what's the benefit of sharing this? What are the potential consequences of sharing this?" she says.
Mr. You also cautions people to think twice before taking consumer DNA tests. They may seem harmless, he says, but at the end of the day, most people don't know where their genetic information is going. "If your genetic sequence is taken, once it's gone, it's gone. There's nothing you can do about it."
[Editor's Note: This essay is in response to our current Big Question, which we posed to experts with different perspectives: "How should DNA tests for intelligence be used, if at all, by parents and educators?"]
It's 2019. Prenatal genetic tests are being used to help parents select from healthy and diseased eggs. Genetic risk profiles are being created for a range of common diseases. And embryonic gene editing has moved into the clinic. The science community is nearly unanimous on the question of whether we should be consulting our genomes as early as possible to create healthy offspring. If you can predict it, let's prevent it, and the sooner, the better.
There are big issues with IQ genetics that should be considered before parents and educators adopt DNA IQ predictions.
When it comes to care of our babies, kids, and future generations, we are doing things today that we never even dreamed would be possible. But one area that remains murky is the long fraught question of IQ, and whether to use DNA science to tell us something about it. There are big issues with IQ genetics that should be considered before parents and educators adopt DNA IQ predictions.
IQ tests have been around for over a century. They've been used by doctors, teachers, government officials, and a whole host of institutions as a proxy for intelligence, especially in youth. At times in history, test results have been used to determine whether to allow a person to procreate, remain a part of society, or merely stay alive. These abuses seem to be a distant part of our past, and IQ tests have since garnered their fair share of controversy for exhibiting racial and cultural biases. But they continue to be used across society. Indeed, much of the literature aimed at expecting parents justifies its recommendations (more omegas, less formula, etc.) based on promises of raising a baby's IQ.
This is the power of IQ testing sans DNA science. Until recently, the two were separate entities, with IQ tests indicating a coefficient created from individual responses to written questions and genetic tests indicating some disease susceptibility based on a sequence of one's DNA. Yet in recent years, scientists have begun to unlock the secrets of inherited aspects of intelligence with genetic analyses that scan millions of points of variation in DNA. Both bench scientists and direct-to-consumer companies have used these new technologies to find variants associated with exceptional IQ scores. There are a number of tests on the open market that parents and educators can use at will. These tests purport to reveal whether a child is inherently predisposed to be intelligent, and some suggest ways to track them for success.
I started looking into these tests when I was doing research for my book, "Social by Nature: The Promise and Peril of Sociogenomics." This book investigated the new genetic science of social phenomena, like educational attainment and political persuasion, investment strategies, and health habits. I learned that, while many of the scientists doing much of the basic research into these things cautioned that the effects of genetic factors were quite small, most saw testing as one data point among many that could help to somehow level the playing field for young people. The rationale went that in certain circumstances, some needed help more than others. Why not put our collective resources together to help them?
Good nutrition, support at home, and access to healthcare and education make a huge difference in how people do.
Some experts believed so strongly in the power of DNA behavioral prediction that they argued it would be unfair not to use predictors to determine a kid's future, prevent negative outcomes, and promote the possibility for positive ones. The educators out in the wider world that I spoke with agreed. With careful attention, they thought sociogenomic tests could help young people get the push they needed when they possessed DNA sequences that weren't working in their favor. Officials working with troubled youth told me they hoped DNA data could be marshaled early enough that kids would thrive at home and in school, thereby avoiding ending up in their care. While my conversations with folks centered around sociogenomic data in general, genetic IQ prediction was completely entangled in it all.
I present these prevailing views to demonstrate both the widespread appeal of genetic predictors as well as the well-meaning intentions of those in favor of using them. It's a truly progressive notion to help those who need help the most. But we must question whether genetic predictors are data points worth looking at.
When we examine the way DNA IQ predictors are generated, we see scientists grouping people with similar IQ test results and academic achievements, and then searching for the DNA those people have in common. But there's a lot more to scores and achievements than meets the eye. Good nutrition, support at home, and access to healthcare and education make a huge difference in how people do. Therefore, the first problem with using DNA IQ predictors is that the data points themselves may be compromised by numerous inaccuracies.
We must then ask ourselves where the deep, enduring inequities in our society are really coming from. A deluge of research has shown that poor life outcomes are a product of social inequalities, like toxic living conditions, underfunded schools, and unhealthy jobs. A wealth of research has also shown that race, gender, sexuality, and class heavily influence life outcomes in numerous ways. Parents and caregivers feed, talk, and play differently with babies of different genders. Teachers treat girls and boys, as well as members of different racial and ethnic backgrounds, differently to the point where they do better and worse in different subject areas.
Healthcare providers consistently racially profile, using diagnostics and prescribing therapies differently for the same health conditions. Access to good schools and healthcare are strongly mitigated by one's race and socioeconomic status. But even youth from privileged backgrounds suffer worse health and life outcomes when they identify or are identified as queer. These are but a few examples of the ways in which social inequities affect our chances in life. Therefore, the second problem with using DNA IQ predictors is that it obscures these very real, and frankly lethal, determinants. Instead of attending to the social environment, parents and educators take inborn genetics as the reason for a child's successes or failures.
It is time that we shift our priorities from seeking genetic causes to fixing the social causes we know to be real.
The other problem with using DNA IQ predictors is that research into the weightiness of DNA evidence has shown time and again that people take DNA evidence more seriously than they do other kinds of evidence. So it's not realistic to say that we can just consider IQ genetics as merely one tiny data point. People will always give more weight to DNA evidence than it deserves. And given its proven negligible effect, it would be irresponsible to do so.
It is time that we shift our priorities from seeking genetic causes to fixing the social causes we know to be real. Parents and educators need to be wary of solutions aimed at them and their individual children.
[Editor's Note: Read another perspective in the series here.]
You read an online article about climate change, then start scanning the comments on Facebook. Right on cue, Seth the Science Denier chimes in with:
The study found that science deniers whose arguments go unchallenged can harm other people's attitudes toward science.
"Humans didn't cause this. Climate is always changing. The earth has always had cycles of warming and cooling—what's happening now isn't new. The idea that humans are causing something that happened long before humans were even around is absurd."
You know he's wrong. You recognize the fallacy in his argument. Do you take the time to engage with him, or write him off and move along?
New research suggests that countering science deniers like Seth is important—not necessarily to change their minds, but to keep them from influencing others.
Looking at Seth's argument, someone without much of a science background might think it makes sense. After all, climate is always changing. The earth has always gone through cycles, even before humans. Without a scientifically sound response, a reader may begin to doubt that human-caused climate change is really a thing.
A study published in Nature found that science deniers whose arguments go unchallenged can harm other people's attitudes toward science. Many people read discussions without actively engaging themselves, and some may not recognize erroneous information when they see it. Without someone to point out how a denier's statements are false or misleading, people are more likely to be influenced by the denier's arguments.
Researchers tested two strategies for countering science denial—by topic (presenting the facts) and by technique (addressing the illogical argument). Rebutting a science denier with facts and pointing out the fallacies in their arguments both had a positive effect on audience attitudes toward legitimate science. A combination of topic and technique rebuttals also had a positive effect.
"In the light of these findings we recommend that advocates for science train in topic and technique rebuttal," the authors wrote. "Both strategies were equally effective in mitigating the influence of science deniers in public debates. Advocates can choose which strategy they prefer, depending on their levels of expertise and confidence."
Who you're really addressing are the lurkers who might be swayed by misinformation if it isn't countered by real science.
So what does that look like? If we were to counter Seth's statements with a topic rebuttal, focusing on facts, it might look something like this:
Yes, climate has always changed due to varying CO2 levels in the atmosphere. Scientists have tracked that data. But they also have data showing that human activity, such as burning fossil fuels, has dramatically increased CO2 levels. Climate change is now happening at a rate that isn't natural and is dangerous for life as we know it.
A technique rebuttal might focus on how Seth is using selective information and leaving out important facts:
Climate has always changed, that's true. But you've omitted important information about why it changes and what's different about the changes we're seeing now.
Ultimately, we could combine the two techniques in something like this:
Climate has always changed, but you've omitted important information about why it changes and what's different about what we're seeing now. Levels of CO2 in the atmosphere are largely what drives natural climate change, but human activity has increased CO2 beyond natural levels. That's making climate change happen faster than it should, with devastating effects for life on Earth.
Remember that the point is not to convince Seth, though it's great if that happens. Who you're really addressing are the lurkers who might be swayed by misinformation if it isn't countered by truth.
It's a wacky world out there, science lovers. Keep on fighting the good fight.