Bad Actors Getting Your Health Data Is the FBI’s Latest Worry
In February 2015, the health insurer Anthem revealed that criminal hackers had gained access to the company's servers, exposing the personal information of nearly 79 million patients. It's the largest known healthcare breach in history.
FBI agents worry that the vast amounts of healthcare data being generated for precision medicine efforts could leave the U.S. vulnerable to cyber and biological attacks.
That year, the data of millions more would be compromised in one cyberattack after another on American insurers and other healthcare organizations. In fact, for the past several years, the number of reported data breaches has increased each year, from 199 in 2010 to 344 in 2017, according to a September 2018 analysis in the Journal of the American Medical Association.
The FBI's Edward You sees this as a worrying trend. He says hackers aren't just interested in your social security or credit card number. They're increasingly interested in stealing your medical information. Hackers can currently use this information to make fake identities, file fraudulent insurance claims, and order and sell expensive drugs and medical equipment. But beyond that, a new kind of cybersecurity threat is around the corner.
Mr. You and others worry that the vast amounts of healthcare data being generated for precision medicine efforts could leave the U.S. vulnerable to cyber and biological attacks. In the wrong hands, this data could be used to exploit or extort an individual, discriminate against certain groups of people, make targeted bioweapons, or give another country an economic advantage.
Precision medicine, of course, is the idea that medical treatments can be tailored to individuals based on their genetics, environment, lifestyle or other traits. But to do that requires collecting and analyzing huge quantities of health data from diverse populations. One research effort, called All of Us, launched by the U.S. National Institutes of Health last year, aims to collect genomic and other healthcare data from one million participants with the goal of advancing personalized medical care.
Other initiatives are underway by academic institutions and healthcare organizations. Electronic medical records, genetic tests, wearable health trackers, mobile apps, and social media are all sources of valuable healthcare data that a bad actor could potentially use to learn more about an individual or group of people.
"When you aggregate all of that data together, that becomes a very powerful profile of who you are," Mr. You says.
A supervisory special agent in the biological countermeasures unit within the FBI's weapons of mass destruction directorate, it's Mr. You's job to imagine worst-case bioterror scenarios and figure out how to prevent and prepare for them.
That used to mean focusing on threats like anthrax, Ebola, and smallpox—pathogens that could be used to intentionally infect people—"basically the dangerous bugs," as he puts it. In recent years, advances in gene editing and synthetic biology have given rise to fears that rogue, or even well-intentioned, scientists could create a virulent virus that's intentionally, or unintentionally, released outside the lab.
"If a foreign source, especially a criminal one, has your biological information, then they might have some particular insights into what your future medical needs might be and exploit that."
While Mr. You is still tracking those threats, he's been traveling around the country talking to scientists, lawyers, software engineers, cyber security professionals, government officials and CEOs about new security threats—those posed by genetic and other biological data.
Emerging threats
Mr. You says one possible situation he can imagine is the potential for nefarious actors to use an individual's sensitive medical information to extort or blackmail that person.
"If a foreign source, especially a criminal one, has your biological information, then they might have some particular insights into what your future medical needs might be and exploit that," he says. For instance, "what happens if you have a singular medical condition and an outside entity says they have a treatment for your condition?" You could get talked into paying a huge sum of money for a treatment that ends up being bogus.
Or what if hackers got a hold of a politician or high-profile CEO's health records? Say that person had a disease-causing genetic mutation that could affect their ability to carry out their job in the future and hackers threatened to expose that information. These scenarios may seem far-fetched, but Mr. You thinks they're becoming increasingly plausible.
On a wider scale, Kavita Berger, a scientist at Gryphon Scientific, a Washington, D.C.-area life sciences consulting firm, worries that data from different populations could be used to discriminate against certain groups of people, like minorities and immigrants.
For instance, the advocacy group Human Rights Watch in 2017 flagged a concerning trend in China's Xinjiang territory, a region with a history of government repression. Police there had purchased 12 DNA sequencers and were collecting and cataloging DNA samples from people to build a national database.
"The concern is that this particular province has a huge population of the Muslim minority in China," Ms. Berger says. "Now they have a really huge database of genetic sequences. You have to ask, why does a police station need 12 next-generation sequencers?"
Also alarming is the potential that large amounts of data from different groups of people could lead to customized bioweapons if that data ends up in the wrong hands.
Eleonore Pauwels, a research fellow on emerging cybertechnologies at United Nations University's Centre for Policy Research, says new insights gained from genomic and other data will give scientists a better understanding of how diseases occur and why certain people are more susceptible to certain diseases.
"As you get more and more knowledge about the genomic picture and how the microbiome and the immune system of different populations function, you could get a much deeper understanding about how you could target different populations for treatment but also how you could eventually target them with different forms of bioagents," Ms. Pauwels says.
Economic competitiveness
Another reason hackers might want to gain access to large genomic and other healthcare datasets is to give their country a leg up economically. Many large cyber-attacks on U.S. healthcare organizations have been tied to Chinese hacking groups.
"This is a biological space race and we just haven't woken up to the fact that we're in this race."
"It's becoming clear that China is increasingly interested in getting access to massive data sets that come from different countries," Ms. Pauwels says.
A year after U.S. President Barack Obama conceived of the Precision Medicine Initiative in 2015—later renamed All of Us—China followed suit, announcing the launch of a 15-year, $9 billion precision health effort aimed at turning China into a global leader in genomics.
Chinese genomics companies, too, are expanding their reach outside of Asia. One company, WuXi NextCODE, which has offices in Shanghai, Reykjavik, and Cambridge, Massachusetts, has built an extensive library of genomes from the U.S., China and Iceland, and is now setting its sights on Ireland.
Another Chinese company, BGI, has partnered with Children's Hospital of Philadelphia and Sinai Health System in Toronto, and also formed a collaboration with the Smithsonian Institute to sequence all species on the planet. BGI has built its own advanced genomic sequencing machines to compete with U.S.-based Illumina.
Mr. You says having access to all this data could lead to major breakthroughs in healthcare, such as new blockbuster drugs. "Whoever has the largest, most diverse dataset is truly going to win the day and come up with something very profitable," he says.
Some direct-to-consumer genetic testing companies with offices in the U.S., like Dante Labs, also use BGI to process customers' DNA.
Experts worry that China could race ahead the U.S. in precision medicine because of Chinese laws governing data sharing. Currently, China prohibits the exportation of genetic data without explicit permission from the government. Mr. You says this creates an asymmetry in data sharing between the U.S. and China.
"This is a biological space race and we just haven't woken up to the fact that we're in this race," he said in January at an American Society for Microbiology conference in Washington, D.C. "We don't have access to their data. There is absolutely no reciprocity."
Protecting your data
While Mr. You has been stressing the importance of data security to anyone who will listen, the National Academies of Sciences, Engineering, and Medicine, which makes scientific and policy recommendations on issues of national importance, has commissioned a study on "safeguarding the bioeconomy."
In the meantime, Ms. Berger says organizations that deal with people's health data should assess their security risks and identify potential vulnerabilities in their systems.
As for what individuals can do to protect themselves, she urges people to think about the different ways they're sharing healthcare data—such as via mobile health apps and wearables.
"Ask yourself, what's the benefit of sharing this? What are the potential consequences of sharing this?" she says.
Mr. You also cautions people to think twice before taking consumer DNA tests. They may seem harmless, he says, but at the end of the day, most people don't know where their genetic information is going. "If your genetic sequence is taken, once it's gone, it's gone. There's nothing you can do about it."
Today’s Focus on STEM Education Is Missing A Crucial Point
I once saw a fascinating TED talk on 3D printing. As I watched the presenter discuss the custom fabrication, not of plastic gears or figurines, but of living, implantable kidneys, I thought I was finally living in the world of Star Trek, and I experienced a flush of that eager, expectant enthusiasm I felt as a child looking toward the future. I looked at my current career and felt a rejuvenation of my commitment to teach young people the power of science.
The well-rounded education of human beings needs to include lessons learned both from a study of the physical world, and from a study of humanity.
Whether we are teachers or not, those of us who admire technology and innovation, and who wish to support progress, usually embrace the importance of educating the next generation of scientists and inventors. Growing a healthy technological civilization takes a lot of work, skill, and wisdom, and its continued health depends on future generations of competent thinkers. Thus, we may find it encouraging that there is currently an abundance of interest in STEM– the common acronym for the study of science, technology, engineering, and math.
But education is as challenging an endeavor as science itself. Educating youth--if we want to do it right--requires as much thought, work, and expertise as discovering a cure or pioneering regenerative medicine. Before we give our money, time, or support to any particular school or policy, let's give some thought to the details of the educational process.
A Well-Balanced Diet
For one thing, STEM education cannot stand in isolation. The well-rounded education of human beings needs to include lessons learned both from a study of the physical world, and from a study of humanity. This is especially true for the basic education of children, but it is true even for college students. And even for those in science and engineering, there are important lessons to be learned from the study of history, literature, and art.
Scientists have their own emotions and values, and also need financial support. The fruits of their labor ultimately benefit other people. How are we all to function together in our division-of-labor society, without some knowledge of the way societies work? How are we to fully thrive and enjoy life, without some understanding of ourselves, our motives, our moral values, and our relationships to others? STEM education needs the humanities as a partner. That flourishing civilization we dream of requires both technical competence and informed life-choices.
Think for Yourself (Even in Science)
Perhaps even more important than what is taught, is the subject of how things are taught. We want our children to learn the skill of thinking independently, but even in the sciences, we often fail completely to demonstrate how. Instead of teaching science as a thinking process, we indoctrinate, using the grand discoveries of the great scientists as our sacred texts. But consider the words of Isaac Newton himself, regarding rote learning:
A Vulgar Mechanick can practice what he has been taught or seen done, but if he is in an error he knows not how to find it out and correct it, and if you put him out of his road he is at a stand. Whereas he that is able to reason nimbly and judiciously about figure, force, and motion, is never at rest till he gets over every rub.
What's the point of all this formal schooling in the first place? Is it, as many of the proponents of STEM education might argue, to train students for a "good" career?
If our goal is to help students "reason nimbly" about the world around them, as the great scientists themselves did, are we succeeding? When we "teach" middle school students about DNA or cellular respiration by presenting as our only supporting evidence cartoon pictures, are we showing students a process of discovery based on evidence and hard work? Or are we just training them to memorize and repeat what the authorities say?
A useful education needs to give students the skill of following a line of reasoning, of asking rational questions, and of chewing things through in their minds--even if we regard the material as beyond question. Besides feeding students a well-balanced diet of knowledge, healthy schooling needs to teach them to digest this information thoroughly.
Thinking Training
Now step back for a moment and think about the purpose of education. What's the point of all this formal schooling in the first place? Is it, as many of the proponents of STEM education might argue, to train students for a "good" career? That view may have some validity for young adults, who are beginning to choose electives in favored subjects, and have started to choose a direction for their career.
But for the basic education of children, this way of thinking is presumptuous and disastrous. I would argue that the central purpose of a basic education is not to teach children how to perform this or that particular skill, but simply to teach them to think clearly. We should not be aiming to provide job training, but thinking training. We should be helping children learn how to "reason nimbly" about the world around them, and breathing life into their thinking processes, by which they will grapple with the events and circumstances of their lives.
So as we admire innovation, dream of a wonderful future, and attempt to nurture the next generation of scientists and engineers, instead of obsessing over STEM education, let us focus on rational education. Let's worry about showing children how to think--about all the important things in life. Let's give them the basic facts of human existence -- physical and humanitarian -- and show them how to fluently and logically understand them.
Some students will become the next generation of creators, and some will follow other careers, but together -- if they are educated properly -- they will continue to grow their inheritance, and to keep our civilization healthy and flourishing, in body and in mind.
Do New Tools Need New Ethics?
Scarcely a week goes by without the announcement of another breakthrough owing to advancing biotechnology. Recent examples include the use of gene editing tools to successfully alter human embryos or clone monkeys; new immunotherapy-based treatments offering longer lives or even potential cures for previously deadly cancers; and the creation of genetically altered mosquitos using "gene drives" to quickly introduce changes into the population in an ecosystem and alter the capacity to carry disease.
The environment for conducting science is dramatically different today than it was in the 1970s, 80s, or even the early 2000s.
Each of these examples puts pressure on current policy guidelines and approaches, some existing since the late 1970s, which were created to help guide the introduction of controversial new life sciences technologies. But do the policies that made sense decades ago continue to make sense today, or do the tools created during different eras in science demand new ethics guidelines and policies?
Advances in biotechnology aren't new of course, and in fact have been the hallmark of science since the creation of the modern U.S. National Institutes of Health in the 1940s and similar government agencies elsewhere. Funding agencies focused on health sciences research with the hope of creating breakthroughs in human health, and along the way, basic science discoveries led to the creation of new scientific tools that offered the ability to approach life, death, and disease in fundamentally new ways.
For example, take the discovery in the 1970s of the "chemical scissors" in living cells called restriction enzymes, which could be controlled and used to introduce cuts at predictable locations in a strand of DNA. This led to the creation of tools that for the first time allowed for genetic modification of any organism with DNA, which meant bacteria, plants, animals, and even humans could in theory have harmful mutations repaired, but also that changes could be made to alter or even add genetic traits, with potentially ominous implications.
The scientists involved in that early research convened a small conference to discuss not only the science, but how to responsibly control its potential uses and their implications. The meeting became known as the Asilomar Conference for the meeting center where it was held, and is often noted as the prime example of the scientific community policing itself. While the Asilomar recommendations were not sufficient from a policy standpoint, they offered a blueprint on which policies could be based and presented a model of the scientific community setting responsible controls for itself.
But the environment for conducting science changed over the succeeding decades and it is dramatically different today than it was in the 1970s, 80s, or even the early 2000s. The regime for oversight and regulation that has provided controls for the introduction of so-called "gene therapy" in humans starting in the mid-1970s is beginning to show signs of fraying. The vast majority of such research was performed in the U.S., U.K., and Europe, where policies were largely harmonized. But as the tools for manipulating humans at the molecular level advanced, they also became more reliable and more precise, as well as cheaper and easier to use—think CRISPR—and therefore more accessible to more people in many more countries, many without clear oversight or policies laying out responsible controls.
There is no precedent for global-scale science policy, though that is exactly what this moment seems to demand.
As if to make the point through news headlines, scientists in China announced in 2017 that they had attempted to perform gene editing on in vitro human embryos to repair an inherited mutation for beta thalassemia--research that would not be permitted in the U.S. and most European countries and at the time was also banned in the U.K. Similarly, specialists from a reproductive medicine clinic in the U.S. announced in 2016 that they had performed a highly controversial reproductive technology by which DNA from two women is combined (so-called "three parent babies"), in a satellite clinic they had opened in Mexico to avoid existing prohibitions on the technique passed by the U.S. Congress in 2015.
In both cases, genetic changes were introduced into human embryos that if successful would lead to the birth of a child with genetically modified germline cells—the sperm in boys or eggs in girls—with those genetic changes passed on to all future generations of related offspring. Those are just two very recent examples, and it doesn't require much imagination to predict the list of controversial possible applications of advancing biotechnologies: attempts at genetic augmentation or even cloning in humans, and alterations of the natural environment with genetically engineered mosquitoes or other insects in areas with endemic disease. In fact, as soon as this month, scientists in Africa may release genetically modified mosquitoes for the first time.
The technical barriers are falling at a dramatic pace, but policy hasn't kept up, both in terms of what controls make sense and how to address what is an increasingly global challenge. There is no precedent for global-scale science policy, though that is exactly what this moment seems to demand. Mechanisms for policy at global scale are limited–-think UN declarations, signatory countries, and sometimes international treaties, but all are slow, cumbersome and have limited track records of success.
But not all the news is bad. There are ongoing efforts at international discussion, such as an international summit on human genome editing convened in 2015 by the National Academies of Sciences and Medicine (U.S.), Royal Academy (U.K.), and Chinese Academy of Sciences (China), a follow-on international consensus committee whose report was issued in 2017, and an upcoming 2nd international summit in Hong Kong in November this year.
These efforts need to continue to focus less on common regulatory policies, which will be elusive if not impossible to create and implement, but on common ground for the principles that ought to guide country-level rules. Such principles might include those from the list proposed by the international consensus committee, including transparency, due care, responsible science adhering to professional norms, promoting wellbeing of those affected, and transnational cooperation. Work to create a set of shared norms is ongoing and worth continued effort as the relevant stakeholders attempt to navigate what can only be called a brave new world.