Bad Actors Getting Your Health Data Is the FBI’s Latest Worry
In February 2015, the health insurer Anthem revealed that criminal hackers had gained access to the company's servers, exposing the personal information of nearly 79 million patients. It's the largest known healthcare breach in history.
FBI agents worry that the vast amounts of healthcare data being generated for precision medicine efforts could leave the U.S. vulnerable to cyber and biological attacks.
That year, the data of millions more would be compromised in one cyberattack after another on American insurers and other healthcare organizations. In fact, for the past several years, the number of reported data breaches has increased each year, from 199 in 2010 to 344 in 2017, according to a September 2018 analysis in the Journal of the American Medical Association.
The FBI's Edward You sees this as a worrying trend. He says hackers aren't just interested in your social security or credit card number. They're increasingly interested in stealing your medical information. Hackers can currently use this information to make fake identities, file fraudulent insurance claims, and order and sell expensive drugs and medical equipment. But beyond that, a new kind of cybersecurity threat is around the corner.
Mr. You and others worry that the vast amounts of healthcare data being generated for precision medicine efforts could leave the U.S. vulnerable to cyber and biological attacks. In the wrong hands, this data could be used to exploit or extort an individual, discriminate against certain groups of people, make targeted bioweapons, or give another country an economic advantage.
Precision medicine, of course, is the idea that medical treatments can be tailored to individuals based on their genetics, environment, lifestyle or other traits. But to do that requires collecting and analyzing huge quantities of health data from diverse populations. One research effort, called All of Us, launched by the U.S. National Institutes of Health last year, aims to collect genomic and other healthcare data from one million participants with the goal of advancing personalized medical care.
Other initiatives are underway by academic institutions and healthcare organizations. Electronic medical records, genetic tests, wearable health trackers, mobile apps, and social media are all sources of valuable healthcare data that a bad actor could potentially use to learn more about an individual or group of people.
"When you aggregate all of that data together, that becomes a very powerful profile of who you are," Mr. You says.
A supervisory special agent in the biological countermeasures unit within the FBI's weapons of mass destruction directorate, it's Mr. You's job to imagine worst-case bioterror scenarios and figure out how to prevent and prepare for them.
That used to mean focusing on threats like anthrax, Ebola, and smallpox—pathogens that could be used to intentionally infect people—"basically the dangerous bugs," as he puts it. In recent years, advances in gene editing and synthetic biology have given rise to fears that rogue, or even well-intentioned, scientists could create a virulent virus that's intentionally, or unintentionally, released outside the lab.
"If a foreign source, especially a criminal one, has your biological information, then they might have some particular insights into what your future medical needs might be and exploit that."
While Mr. You is still tracking those threats, he's been traveling around the country talking to scientists, lawyers, software engineers, cyber security professionals, government officials and CEOs about new security threats—those posed by genetic and other biological data.
Emerging threats
Mr. You says one possible situation he can imagine is the potential for nefarious actors to use an individual's sensitive medical information to extort or blackmail that person.
"If a foreign source, especially a criminal one, has your biological information, then they might have some particular insights into what your future medical needs might be and exploit that," he says. For instance, "what happens if you have a singular medical condition and an outside entity says they have a treatment for your condition?" You could get talked into paying a huge sum of money for a treatment that ends up being bogus.
Or what if hackers got a hold of a politician or high-profile CEO's health records? Say that person had a disease-causing genetic mutation that could affect their ability to carry out their job in the future and hackers threatened to expose that information. These scenarios may seem far-fetched, but Mr. You thinks they're becoming increasingly plausible.
On a wider scale, Kavita Berger, a scientist at Gryphon Scientific, a Washington, D.C.-area life sciences consulting firm, worries that data from different populations could be used to discriminate against certain groups of people, like minorities and immigrants.
For instance, the advocacy group Human Rights Watch in 2017 flagged a concerning trend in China's Xinjiang territory, a region with a history of government repression. Police there had purchased 12 DNA sequencers and were collecting and cataloging DNA samples from people to build a national database.
"The concern is that this particular province has a huge population of the Muslim minority in China," Ms. Berger says. "Now they have a really huge database of genetic sequences. You have to ask, why does a police station need 12 next-generation sequencers?"
Also alarming is the potential that large amounts of data from different groups of people could lead to customized bioweapons if that data ends up in the wrong hands.
Eleonore Pauwels, a research fellow on emerging cybertechnologies at United Nations University's Centre for Policy Research, says new insights gained from genomic and other data will give scientists a better understanding of how diseases occur and why certain people are more susceptible to certain diseases.
"As you get more and more knowledge about the genomic picture and how the microbiome and the immune system of different populations function, you could get a much deeper understanding about how you could target different populations for treatment but also how you could eventually target them with different forms of bioagents," Ms. Pauwels says.
Economic competitiveness
Another reason hackers might want to gain access to large genomic and other healthcare datasets is to give their country a leg up economically. Many large cyber-attacks on U.S. healthcare organizations have been tied to Chinese hacking groups.
"This is a biological space race and we just haven't woken up to the fact that we're in this race."
"It's becoming clear that China is increasingly interested in getting access to massive data sets that come from different countries," Ms. Pauwels says.
A year after U.S. President Barack Obama conceived of the Precision Medicine Initiative in 2015—later renamed All of Us—China followed suit, announcing the launch of a 15-year, $9 billion precision health effort aimed at turning China into a global leader in genomics.
Chinese genomics companies, too, are expanding their reach outside of Asia. One company, WuXi NextCODE, which has offices in Shanghai, Reykjavik, and Cambridge, Massachusetts, has built an extensive library of genomes from the U.S., China and Iceland, and is now setting its sights on Ireland.
Another Chinese company, BGI, has partnered with Children's Hospital of Philadelphia and Sinai Health System in Toronto, and also formed a collaboration with the Smithsonian Institute to sequence all species on the planet. BGI has built its own advanced genomic sequencing machines to compete with U.S.-based Illumina.
Mr. You says having access to all this data could lead to major breakthroughs in healthcare, such as new blockbuster drugs. "Whoever has the largest, most diverse dataset is truly going to win the day and come up with something very profitable," he says.
Some direct-to-consumer genetic testing companies with offices in the U.S., like Dante Labs, also use BGI to process customers' DNA.
Experts worry that China could race ahead the U.S. in precision medicine because of Chinese laws governing data sharing. Currently, China prohibits the exportation of genetic data without explicit permission from the government. Mr. You says this creates an asymmetry in data sharing between the U.S. and China.
"This is a biological space race and we just haven't woken up to the fact that we're in this race," he said in January at an American Society for Microbiology conference in Washington, D.C. "We don't have access to their data. There is absolutely no reciprocity."
Protecting your data
While Mr. You has been stressing the importance of data security to anyone who will listen, the National Academies of Sciences, Engineering, and Medicine, which makes scientific and policy recommendations on issues of national importance, has commissioned a study on "safeguarding the bioeconomy."
In the meantime, Ms. Berger says organizations that deal with people's health data should assess their security risks and identify potential vulnerabilities in their systems.
As for what individuals can do to protect themselves, she urges people to think about the different ways they're sharing healthcare data—such as via mobile health apps and wearables.
"Ask yourself, what's the benefit of sharing this? What are the potential consequences of sharing this?" she says.
Mr. You also cautions people to think twice before taking consumer DNA tests. They may seem harmless, he says, but at the end of the day, most people don't know where their genetic information is going. "If your genetic sequence is taken, once it's gone, it's gone. There's nothing you can do about it."
Genital Transplants: Is Science Going Too Far, Too Fast?
Thanks to the remarkable evolution of organ transplantation, it's now possible to replace genitals that don't work properly or have been injured. Surgeons have been transplanting ovarian tissue for more than a decade, and they're now successfully transplanting penises and wombs too.
Rules and regulations aren't keeping up with the rapid rise of genital transplants.
Earlier this year, an American soldier whose genitals were injured by a bomb in Afghanistan received the first-ever transplant of a penis and scrotum at Johns Hopkins Medicine.
Rules and regulations aren't keeping up with the rapid rise of genital transplants, however, and there's no consensus about how society should handle a long list of difficult and delicate questions.
Are these expensive transplants worth the risk when other alternatives exist? Should men, famously obsessed with their penises, be able to ask for a better model simply because they want one? And what happens when transplant technology further muddles the concept of biological parenthood?
"We need to remember that the human body is not a machine with interchangeable parts," says bioethicist Craig M. Klugman of DePaul University. "These are complicated, difficult and potentially dangerous surgeries. And they require deep consideration on a physical, psychological, spiritual, and financial level."
From Extra Testicles to Replacement Penises
Tinkering with human genitalia -- especially the male variety -- is hardly a new phenomenon. A French surgeon created artificial penises for injured soldiers in the 16th century. And a bizarre implant craze swept the U.S. in the 1930s when a quack physician convinced men that, quite literally, the more testicles the merrier – and if the human variety wasn't available, then ones from goats would have to do.
Now we're more sophisticated. Modern genital transplants are designed to do two things: Treat infertility (in women) and restore the appearance and function of genitals (in men).
In women, surgeons have successfully transplanted ovarian tissue from one woman to another since the mid-2000s, when an Alabama woman gave birth after getting a transplant from her identical twin sister. Last year, for the first time in the U.S., a young woman gave birth after getting a uterus transplant from a living donor.
"Where do you draw the line? Is pregnancy a privilege? Is it a right?"
As for men, surgeons in the U.S. and South Africa have successfully transplanted penises from dead men into four men whose genitals were injured by a botched circumcision, penile cancer or a wartime injury. One man reportedly fathered a child after the procedure.
The Johns Hopkins procedure was the first to include a scrotum. Testicles, however, were not transplanted due to ethical concerns. Surgeons have successfully transplanted testicles from man-to-man in the past, but this procedure isn't performed because the testes would produce sperm with the donor's DNA. As a result, the recipient could father a baby who is genetically related to the donor.
Are Transplants Worth the Expense and Risk?
Genital transplants are not simple procedures. They're extremely expensive, with a uterus transplant estimated to cost as much as $250,000. They're dangerous, since patients typically must take powerful drugs to keep their immune systems from rejecting their new organs. And they're not medically necessary. All have alternatives that are much less risky and costly.
Dr. Hiten D. Patel, a urologist at Johns Hopkins University, believes these types of factors make penis transplants unnecessary. As he wrote in a 2018 commentary in the journal European Urology, "What in the world are we doing?"
There are similar questions about female genital transplants, which allow infertile women to become pregnant instead of turning to alternatives like adoption or surrogacy. "This is not a life-saving transplant. A woman can very well live without a uterus," says McGill University's Dr. Jacques Balayla, who studies uterine transplantation. "Where do you draw the line? Is pregnancy a privilege? Is it a right? You don't want to cause harm to an individual unless there's an absolute need for the procedure."
But Johns Hopkins urologist Dr. Arthur L. Burnett II, who served on the surgical team that performed the penis-and-scrotum procedure, says penis transplants can be appropriate when other alternatives – like a "neophallus" created from forearm skin and tissue – aren't feasible.
It's also important to "restore normalcy," he says. "We want someone to be able to have sense of male adequacy and a normal sense of bodily well-being on both physical and psychological levels."
Surgical team members who performed the penis transplant, including W. P. Andrew Lee, director of the department of plastic and reconstructive surgery, center.
As for the anonymous recipient, he's reportedly doing "very well" five months after the transplant. An update on Johns Hopkins' website states that "he has normal urinary functions and is beginning to regain sensation in the transplanted tissues."
When the Organ Donors Do It Live
Some peculiar messages reached Burnett's desk after his institution announced it would begin performing penis transplants. Several men wanted to donate their own organs. But for now, transplanted penises are only coming from dead donors whose next of kin have approved the donation.
Burnett doesn't expect live donors to enter the penis transplant picture. But there are no guidelines or policies to stop surgeons from transplanting a penis from a live donor or, for that matter, a testicle.
Live women have already donated wombs and ovarian tissue, forcing them to face their own risks from transplant surgery. "You're putting the donor at risk because she has to undergo pretty expensive surgery for a procedure that is not technically lifesaving," McGill University's Balayla says.
When it comes to uterus transplants, the risk spreads even beyond donor and recipient. Balayla notes there's a third person in the equation: The fetus. "Immunosuppressant medication may harm the baby, and you're feeding the baby with a [uterine] blood vessel that's not natural, held together by stitches," he says.
It's up to each medical institution that performs the procedures to set its own policies.
Bioethicists are talking about other issues raised by genital transplants: How should operations for transgender people fit in? Should men be able to get penis transplants for purely cosmetic reasons? And then there's the looming question of genetic parenthood.
It's up to each medical institution that performs the procedures to set its own policies.
Let's say a woman gets a transplant of ovarian tissue, a man gets a testicle transplant, and they have a baby the old-fashioned way.* The child would be genetically linked to the donors, not the parents who conceived him or her.
Call this a full-employment act not just for bioethicists but theologians too. "Catholicism is generally against reproductive technologies because it removes God from the nature of the procreative act. This technology, though, could result in conception through the natural act. Would their concern remain?" DePaul University's Klugman asked. "Judaism is concerned with knowing a child's parentage, would a child from transplanted testes be the child of the donor or the recipient? Would an act of coitus with a transplanted penis be adultery?"
Yikes. Maybe it's time for the medical field or the law to step in to determine what genital transplants surgeons can and can't -- or shouldn't -- do.
So far, however, only uterus transplants have guidelines in place. Otherwise, it's up to each medical institution that performs the procedures to set its own policies.
"I don't know if the medical establishment is in the position to do the best job of self-regulation," says Lisa Campo-Engelstein, a bioethicist with Albany Medical College. "Reproductive medicine in this country is a huge for-profit industry. There's a possibility of exploitation if we leave this to for-profit fertility companies."
And, as bioethicist Klugman notes, guidelines "aren't laws, and people can and do violate them with no effect."
He doesn't think laws are the solution to the ethical issues raised by genital transplants either. Still, he says, "we do need a national conversation on these topics to help provide guidance for doctors and patients."
[Correction: The following sentence has been updated: "Let's say a woman gets a transplant of ovarian tissue, a man gets a testicle transplant, and they have a baby the old-fashioned way." The original sentence mistakenly read "uterus transplant" instead of "ovarian tissue."]
Carl Zimmer: Genetically Editing Humans Should Not Be Our Biggest Worry
Carl Zimmer, the award-winning New York Times science writer, recently published a stellar book about human heredity called "She Has Her Mother's Laugh." Truly a magnum opus, the book delves into the cultural and scientific evolution of genetics, the field's outsize impact on society, and the new ways we might fundamentally alter our species and our planet.
"I was only prepared to write about how someday we would cross this line, and actually, we've already crossed it."
Zimmer spoke last week with editor-in-chief Kira Peikoff about the international race to edit the genes of human embryos, the biggest danger he sees for society (hint: it's not super geniuses created by CRISPR), and some outlandish possibilities for how we might reproduce in the future. This interview has been edited and condensed for clarity.
I was struck by the number of surprises you uncovered while researching human heredity, like how fetal cells can endure for a lifetime in a mother's body and brain. What was one of the biggest surprises for you?
Something that really jumped out for me was for the section on genetically modifying people. It does seem incredibly hypothetical. But then I started looking into mitochondrial replacement therapy, so-called "three parent babies." I was really surprised to discover that almost by accident, a number of genetically modified people were created this way [in the late 90s and early 2000s]. They walk among us, and they're actually fine as far as anyone can tell. I was only prepared to write about how someday we would cross this line, and actually, we've already crossed it.
And now we have the current arms race between the U.S. and China to edit diseases out of human embryos, with China being much more willing and the U.S. more reluctant. Do you think it's more important to get ahead or to proceed as ethically as possible?
I would prefer a middle road. I think that rushing into tinkering with the features of human heredity could be a disastrous mistake for a lot of reasons. On the other hand, if we completely retreat from it out of some vague fear, I think that we won't take advantage of the actual benefits that this technology might have that are totally ethically sound.
I think the United Kingdom is actually showing how you can go the middle route with mitochondrial replacement therapy. The United States has just said nope, you can't do it at all, and you have Congressmen talking about how it's just playing God or Frankenstein. And then there are countries like Mexico or the Ukraine where people are doing mitochondrial replacement therapy because there are no regulations at all. It's a wild west situation, and that's not a good idea either.
But in the UK, they said alright, well let's talk about this, let's have a debate in Parliament, and they did, and then the government came up with a well thought-through policy. They decided that they were going to allow for this, but only in places that applied for a license, and would be monitored, and would keep track of the procedure and the health of these children and actually have real data going forward. I would imagine that they're going to very soon have their first patients.
As you mentioned, one researcher recently traveled to Mexico from New York to carry out the so-called "three-parent baby" procedure in order to escape the FDA's rules. What's your take on scientists having to leave their own jurisdictions to advance their research programs under less scrutiny?
I think it's a problem when people who have a real medical need have to leave their own country to get truly effective treatment for it. On the other hand, we're seeing lots of people going abroad to countries that don't monitor all the claims that clinics are making about their treatments. So you have stem cell clinics in all sorts of places that are making all sorts of ridiculous promises. They're not delivering those results, and in some cases, they're doing harm.
"Advances in stem cell biology and reproductive biology are a much bigger challenge to our conventional ideas about heredity than CRISPR is."
It's a tricky tension for sure. Speaking of gene editing humans, you mention in the book that one of the CRISPR pioneers, Jennifer Doudna, now has recurring nightmares about Hitler. Do you think that her fears about eugenics being revived with gene editing are justified?
The word "eugenics" has a long history and it's meant different things to different people. So we have to do a better job of talking about it in the future if we really want to talk about the risks and the promises of technology like CRISPR. Eugenics in its most toxic form was an ideology that let governments, including the United States, sterilize their own citizens by the tens of thousands. Then Nazi Germany also used eugenics as a justification to exterminate many more people.
Nobody's talking about that with CRISPR. Now, are people concerned that we are going to wipe out lots of human genetic diversity with it? That would be a bad thing, but I'm skeptical that would actually ever happen. You would have to have some sort of science fiction one-world government that required every new child to be born with IVF. It's not something that keeps me up at night. Honestly, I think we have much bigger problems to worry about.
What is the biggest danger relating to genetics that we should be aware of?
Part of what made eugenics such a toxic ideology was that it was used as a justification for indifference. In other words, if there are problems in society, like a large swath of people who are living in poverty, well, there's nothing you can do about it because it must be due to genetics.
If you look at genetics as being the sole place where you can solve humanity's problems, then you're going to say well, there's no point in trying to clean up the environment or trying to improve human welfare.
A major theme in your book is that we should not narrow our focus on genes as the only type of heredity. We also may inherit some epigenetic marks, some of our mother's microbiome and mitochondria, and importantly, our culture and our environment. Why does an expanded view of heredity matter?
We should think about the world that our children are going to inherit, and their children, and their children. They're going to inherit our genes, but they're also going to inherit this planet and we're doing things that are going to have an incredibly long-lasting impact on it. I think global warming is one of the biggest. When you put carbon dioxide into the air, it stays there for a very, very long time. If we stopped emitting carbon dioxide now, the Earth would stay warm for many centuries. We should think about tinkering with the future of genetic heredity, but I think we should also be doing that with our environmental heredity and our cultural heredity.
At the end of the book, you discuss some very bizarre possibilities for inheritance that could be made possible through induced pluripotent stem cell technology and IVF -- like four-parent babies, men producing eggs, and children with 8-celled embryos as their parents. If this is where reproductive medicine is headed, how can ethics keep up?
I'm not sure actually. I think that these advances in stem cell biology and reproductive biology are a much bigger challenge to our conventional ideas about heredity than CRISPR is. With CRISPR, you might be tweaking a gene here and there, but they're still genes in an embryo which then becomes a person, who would then have children -- the process our species has been familiar with for a long time.
"We have to recognize that we need a new language that fits with the science of heredity in the 21st century."
We all assume that there's no way to find a fundamentally different way of passing down genes, but it turns out that it's not really that hard to turn a skin cell from a cheek scraping into an egg or sperm. There are some challenges that still have to be worked out to make this something that could be carried out a lot in labs, but I don't see any huge barriers to it. Ethics doesn't even have the language to discuss the possibilities. Like for example, one person producing both male and female sex cells, which are then fertilized to produce embryos so that you have a child who only has one parent. How do we even talk about that? I don't know. But that's coming up fast.
We haven't developed our language as quickly as the technology itself. So how do we move forward?
We have to recognize that we need a new language that fits with the science of heredity in the 21st century. I think one of the biggest problems we have as a society is that most of our understanding about these issues largely comes from what we learned in grade school and high school in biology class. A high school biology class, even now, gets up to Mendel and then stops. Gregor Mendel is a great place to start, but it's a really bad place to stop talking about heredity.
[Ed. Note: Zimmer's book can be purchased through your retailer of choice here.]
The cover of Zimmer's new book about genetics.
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.