Big Data Probably Knows More About You Than Your Friends Do
Data is the new oil. It is highly valuable, and it is everywhere, even if you're not aware of it. For example, it's there when you use social media. Sharing pictures on Facebook lets its facial recognition software peg you and your friends. Thanks to that software, now anywhere you visit that has installed cameras, your face can be identified and your actions recorded.
The big data revolution is advancing much faster than the ones before, and it carries both promises and perils for humanity.
It's there when you log into Twitter, posting one of the 230 million tweets per day, which up until last month were all archived by the Library of Congress and will be made public for research. These social media data can be used to predict your political affiliations, ethnicity, race, age, how close you are with your family and friends, your mental health, even when you are most likely to be grumpy or go to the gym. These data can also predict when you are apt to get sick and track how diseases are spreading.
In fact, tracking isn't limited to what you decide to share or public spaces anymore. Lab experiments show Comcast and other cable companies may soon be able to record and monitor movements in your house. They may also be able to read your lips and identify your visitors simply by assessing how Wi-Fi waves bounce off bodies and other objects in houses. In one study, MIT researchers used routers and sensors to monitor breathing and heart rates with 99% accuracy. Routers could soon be used for seemingly good things, like monitoring infant breathing and whether an older adult is about to take a big tumble. However, it may also enable unwanted and unparalleled levels of surveillance.
Some call the first digital pill a snitch pill, medication with a tattletale, and big brother in your belly.
Big data is there every time you pick up your smartphone, which can track your daily steps, where you go via geolocation, what time you wake up and go to bed, your punctuality, and even your overall health depending on which features you have enabled. Are you close with your mom; are you a sedentary couch potato; did you commit a murder (iPhone data was recently used in a German murder trial)? Smartphone-generated data can be used to label you---and not just you, your future and past generations too.
Smartphones are not the only "things" gathering data on you. Anything with an on and off switch can be connected to the internet and generate data. The new rule seems to be, if it can be, it will be, connected. Washing machines, coffee makers, medical appliances, cars, and even your luggage (yes, someone created a self-driving suitcase) can and are often generating data. "Smart" refrigerators can monitor your food levels and automatically create shopping lists and order food for you—while recording your alcohol consumption and whether you tend to be a healthy or junk food eater.
Even medicines can monitor behaviors. The first digital pill was just approved by the FDA last November to track whether patients take their medicines. It has a sensor that sends signals to a patient's smartphone, and others, when it encounters stomach acid. Some call it a snitch pill, medication with a tattletale, and big brother in your belly. Others see it as a major breakthrough to help patients remember to take their medications and to save payers millions of dollars.
Big data is there when you go shopping. Credit card and retail data can show whether you pay for a gym, if you are pregnant, have children, and your credit-worthiness. Uber and Lyft transactional data reveal what time you usually go to and leave work and who you regularly visit (Uber data has been used to catch cheating spouses).
Amazon now sells a bedroom camera to see your fashion choices and offer advice. It is marketing a more fashionable you, but it probably also wants the video feed showing your body measurements—they're "a newly prized currency," according to the Washington Post. They help retailers create more customized and better fitting clothes. Amazon also just partnered with Berkshire Hathaway and JPMorgan Chase, the largest bank in the United States by assets, to create an independent health-care company for their employees--raising privacy concerns as Amazon already owns so much data about us, from drones, devices, the AI of Alexa, and our viewing, eating, and other purchasing habits on Amazon Prime.
Data generation and storage can also be used to make the world better, safer and fairer.
Big data is arguably a new phenomenon; almost all the world's data (90%) were produced within the last 2 years or so. It is a result of the fusion of physical, digital, and biological technologies that together constitute the fourth industrial revolution, according to the World Economic Forum. Unlike the last three revolutions, involving the discoveries of steam power, electrical energy, and computers—this revolution is advancing much faster than the ones before and it carries both promises and perils for humanity.
Some people may want to opt out of all this tracking, reduce their digital footprint and stay "off the grid." However, it is worth noting that data generation and storage can be used for great things --- things that make the world better, safer and fairer. For example, sharing electronic health records and social media data can help scientists better track and understand diseases, develop new cures and therapies, and understand the safety and efficacy profiles of medicines and vaccines.
While full of promise, big data is not without its pitfalls. Data are often not interoperable or easily integrated. You can use your credit card practically anywhere in the world, but you cannot easily port your electronic health record to the doctor or hospital across the street, for example.
Data quality can also be poor. It is dependent on the person entering it. My electronic health record at one point said I was male, and I was pregnant at the time. No doctors or nurses seemed to notice. The problem is worse on a global level. For example, causes of death can be coded differently by country and village. Take HIV patients: they often develop secondary infections, like TB. Do you record the cause of death as TB or HIV? There isn't global consistency, and political pressure from patient groups can exert itself on death records. Often, each group wants to say they have the most deaths so they can fundraise more money.
Data can be biased. More than 80 percent of genomic data comes from Caucasians. Only 14 percent is from Asians and 3.5 percent is from African and Hispanic populations. Thus, when scientists use genomic data to develop drugs or lab tests, they may create biased products that work for only some demographics. Take type 2 diabetes blood tests; some do not work well for African Americans. One study estimates that 650,000 African Americans may have undiagnosed diabetes, because a common blood test doesn't work for them. Using biased data in medicine can be a matter of life and death. Moreover, if genomic medicine benefits only "a privileged few," the practice raises concerns about unequal access.
Large companies are selling data that originated from you and you are not sharing in the wealth.
We need to think carefully and be transparent about the values embedded in our data, data analytics (algorithms), and data applications. Numbers are never neutral. Algorithms are always embedded with subjective normative values--sometimes purposely, sometimes not. To address this problem, we need ethicists who can audit databanks and algorithms to identify embedded norms, values and biases and help ensure they are addressed or at least transparently disclosed. Additionally, we need to determine how to let people opt out of certain types of data collection and uses—and not just at the beginning of a system, but also at any point in their lifetimes. There is a right to be forgotten, which hasn't been adequately operationalized in today's data sphere.
What do you think happens to all of these data collected about us? The short answer is the public doesn't really know. A lot of it looks like what is in a medical record—i.e. height, weight, pregnancy status, age, mental health, pulse, blood pressure, and illness symptoms--- yet, it isn't protected by HIPPA, like your medical record information.
And it is being consolidated into the hands of fewer and fewer big players. Large companies are selling data that originated from you and you are not sharing in the wealth.
A possible solution is to create an app, managed by a nonprofit or public benefit corporation, through which you could download and manage all the data collected about you. For example, you could download your credit card statements with all your purchasing habits, your Uber rides showing transit patterns, medical records, electric bills, every digital record you have and would like to download--into one application. You would then have the power to license pieces or the collection of your data to users for a small fee for one year at a time. Uses and users could be monitored and audited leveraging blockchain capabilities. After the year is up, you can withdraw access.
You could be your own data landlord. We could democratize big data and empower people to better control and manage the wealth of information collected about us. Why should only the big companies like Amazon and Apple profit off the new oil? Let's create an app so we can all manage our data wealth and maybe even become data barons—an app created by the people for the people.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. David Spiegel, associate chair of psychiatry and behavioral sciences at Stanford, and Dr. Filip Swirski, professor of medicine and cardiology at the Icahn School of Medicine at Mount Sinai.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. David Spiegel, associate chair of psychiatry and behavioral sciences at Stanford, and Dr. Filip Swirski, professor of medicine and cardiology at the Icahn School of Medicine at Mount Sinai.
- Breathing this way cuts down on anxiety*
- Could your fasting regimen make you sick?
- This type of job makes men more virile
- 3D printed hearts could save your life
- Yet another potential benefit of metformin
* This video with Dr. Andrew Huberman of Stanford shows exactly how to do the breathing practice.
This podcast originally aired on March 3, 2023.
Breakthrough drones deliver breast milk in rural Uruguay
Until three months ago, nurse Leopoldina Castelli used to send bottles of breast milk to nourish babies in the remote areas of Tacuarembó, in northern Uruguay, by way of ambulances or military trucks. That is, if the vehicles were available and the roads were passable, which wasn’t always the case. Now, five days per week, she stands by a runway at the hospital, located in Tacuarembó’s capital, watching a drone take off and disappear from view, carrying the milk to clinics that serve the babies’ families.
The drones can fly as far as 62 miles. Long distances and rough roads are no obstacles. The babies, whose mothers struggle to produce sufficient milk and cannot afford formula, now receive ample supplies for healthy growth. “Today we provided nourishment to a significantly larger number of children, and this is something that deeply moves me,” Castelli says.
About two decades ago, the Tacuarembó hospital established its own milk bank, supported by donations from mothers across Tacuarembó. Over the years, the bank has provided milk to infants immediately after birth. It's helped drive a “significant and sustained” decrease in infant mortality, says the hospital director, Ciro Ferreira.
But these children need breast milk throughout their first six months, if not longer, to prevent malnutrition and other illnesses that are prevalent in rural Tacuarembó. Ground transport isn't quick or reliable enough to meet this goal. It can take several hours, during which the milk may spoil due to a lack of refrigeration.
The battery-powered drones have been the difference-maker. The project to develop them, financed by the UNICEF Innovation Fund, is the first of its kind in Latin America. To Castelli, it's nothing short of a revolution. Tacuarembó Hospital, along with three rural clinics in the most impoverished part of Uruguay, are its leaders.
"This marks the first occasion when the public health system has been directly impacted [by our technology]," says Sebastián Macías, the CEO and co-founder of Cielum, an engineer at the University Republic, which collaborated on the technology with a Uruguayan company called Cielum and a Swiss company, Rigitech.
The drone can achieve a top speed of up to 68 miles per hour, is capable of flying in light rain, and can withstand winds of up to 30 miles per hour at a maximum altitude of 120 meters.
"We have succeeded in embracing the mothers from rural areas who were previously slipping through the cracks of the system," says Ferreira, the hospital director. He envisions an expansion of the service so it can improve health for children in other rural areas.
Nurses load the drone for breast milk delivery.
Sebastián Macías - Cielum
The star aircraft
The drone, which costs approximately $70,000, was specifically designed for the transportation of biological materials. Constructed from carbon fiber, it's three meters wide, two meters long and weighs 42 pounds when fully loaded. Additionally, it is equipped with a ballistic parachute to ensure a safe descent in case the technology fails in midair. Furthermore, it can achieve a top speed of 68 miles per hour, fly in light rain, and withstand winds of 30 miles per hour at a height of 120 meters.
Inside, the drones feature three refrigerated compartments that maintain a stable temperature and adhere to the United Nations’ standards for transporting perishable products. These compartments accommodate four gallons or 6.5 pounds of cargo. According to Macías, that's more than sufficient to carry a week’s worth of milk for one infant on just two flights, or 3.3 pounds of blood samples collected in a rural clinic.
“From an energy perspective, it serves as an efficient mode of transportation and helps reduce the carbon emissions associated with using an ambulance,” said Macías. Plus, the ambulance can remain available in the town.
Macías, who has led software development for the drone, and three other technicians have been trained to operate it. They ensure that the drone stays on course, monitor weather conditions and implement emergency changes when needed. The software displays the in-flight positions of the drones in relation to other aircraft. All agricultural planes in the region receive notification about the drone's flight path, departure and arrival times, and current location.
The future: doubling the drone's reach
Forty-five days after its inaugural flight, the drone is now making five flights per week. It serves two routes: 34 miles to Curtina and 31 miles to Tambores. The drone reaches Curtina in 50 minutes while ambulances take double that time, partly due to the subpar road conditions. Pueblo Ansina, located 40 miles from the state capital, will soon be introduced as the third destination.
Overall, the drone’s schedule is expected to become much busier, with plans to accomplish 20 weekly flights by the end of October and over 30 in 2024. Given the drone’s speed, Macías is contemplating using it to transport cancer medications as well.
“When it comes to using drones to save lives, for us, the sky is not the limit," says Ciro Ferreira, Tacuarembó hospital director.
In future trips to clinics in San Gregorio de Polanco and Caraguatá, the drone will be pushed to the limit. At these locations, a battery change will be necessary, but it's worth it. The route will cover up to 10 rural Tacuarembó clinics plus one hospital outside Tacuarembó, in Rivera, close to the border with Brazil. Currently, because of a shortage of ambulances, the delivery of pasteurized breast milk to Rivera only occurs every 15 days.
“The expansion to Rivera will include 100,000 more inhabitants, doubling the healthcare reach,” said Ferreira, the director of the Tacuarembó Hospital. In itself, Ferreira's hospital serves the medical needs of 500,000 people as one of the largest in Uruguay's interior.
Alejandro Del Estal, an aeronautical engineer at Rigitech, traveled from Europe to Tacuarembó to oversee the construction of the vertiports – the defined areas that can support drones’ take-off and landing – and the first flights. He pointed out that once the flight network between hospitals and rural polyclinics is complete in Uruguay, it will rank among the five most extensive drone routes in the world for any activity, including healthcare and commercial uses.
Cielum is already working on the long-term sustainability of the project. The aim is to have more drones operating in other rural regions in the western and northern parts of the country. The company has received inquiries from Argentina and Colombia, but, as Macías pointed out, they are exercising caution when making commitments. Expansion will depend on the development of each country’s regulations for airspace use.
For Ferreira, the advantages in Uruguay are evident: "This approach enables us to bridge the geographical gap, enhance healthcare accessibility, and reduce the time required for diagnosing and treating rural inhabitants, all without the necessity of them traveling to the hospital,” he says. "When it comes to using drones to save lives, for us, the sky is not the limit."