Big Data Probably Knows More About You Than Your Friends Do
Data is the new oil. It is highly valuable, and it is everywhere, even if you're not aware of it. For example, it's there when you use social media. Sharing pictures on Facebook lets its facial recognition software peg you and your friends. Thanks to that software, now anywhere you visit that has installed cameras, your face can be identified and your actions recorded.
The big data revolution is advancing much faster than the ones before, and it carries both promises and perils for humanity.
It's there when you log into Twitter, posting one of the 230 million tweets per day, which up until last month were all archived by the Library of Congress and will be made public for research. These social media data can be used to predict your political affiliations, ethnicity, race, age, how close you are with your family and friends, your mental health, even when you are most likely to be grumpy or go to the gym. These data can also predict when you are apt to get sick and track how diseases are spreading.
In fact, tracking isn't limited to what you decide to share or public spaces anymore. Lab experiments show Comcast and other cable companies may soon be able to record and monitor movements in your house. They may also be able to read your lips and identify your visitors simply by assessing how Wi-Fi waves bounce off bodies and other objects in houses. In one study, MIT researchers used routers and sensors to monitor breathing and heart rates with 99% accuracy. Routers could soon be used for seemingly good things, like monitoring infant breathing and whether an older adult is about to take a big tumble. However, it may also enable unwanted and unparalleled levels of surveillance.
Some call the first digital pill a snitch pill, medication with a tattletale, and big brother in your belly.
Big data is there every time you pick up your smartphone, which can track your daily steps, where you go via geolocation, what time you wake up and go to bed, your punctuality, and even your overall health depending on which features you have enabled. Are you close with your mom; are you a sedentary couch potato; did you commit a murder (iPhone data was recently used in a German murder trial)? Smartphone-generated data can be used to label you---and not just you, your future and past generations too.
Smartphones are not the only "things" gathering data on you. Anything with an on and off switch can be connected to the internet and generate data. The new rule seems to be, if it can be, it will be, connected. Washing machines, coffee makers, medical appliances, cars, and even your luggage (yes, someone created a self-driving suitcase) can and are often generating data. "Smart" refrigerators can monitor your food levels and automatically create shopping lists and order food for you—while recording your alcohol consumption and whether you tend to be a healthy or junk food eater.
Even medicines can monitor behaviors. The first digital pill was just approved by the FDA last November to track whether patients take their medicines. It has a sensor that sends signals to a patient's smartphone, and others, when it encounters stomach acid. Some call it a snitch pill, medication with a tattletale, and big brother in your belly. Others see it as a major breakthrough to help patients remember to take their medications and to save payers millions of dollars.
Big data is there when you go shopping. Credit card and retail data can show whether you pay for a gym, if you are pregnant, have children, and your credit-worthiness. Uber and Lyft transactional data reveal what time you usually go to and leave work and who you regularly visit (Uber data has been used to catch cheating spouses).
Amazon now sells a bedroom camera to see your fashion choices and offer advice. It is marketing a more fashionable you, but it probably also wants the video feed showing your body measurements—they're "a newly prized currency," according to the Washington Post. They help retailers create more customized and better fitting clothes. Amazon also just partnered with Berkshire Hathaway and JPMorgan Chase, the largest bank in the United States by assets, to create an independent health-care company for their employees--raising privacy concerns as Amazon already owns so much data about us, from drones, devices, the AI of Alexa, and our viewing, eating, and other purchasing habits on Amazon Prime.
Data generation and storage can also be used to make the world better, safer and fairer.
Big data is arguably a new phenomenon; almost all the world's data (90%) were produced within the last 2 years or so. It is a result of the fusion of physical, digital, and biological technologies that together constitute the fourth industrial revolution, according to the World Economic Forum. Unlike the last three revolutions, involving the discoveries of steam power, electrical energy, and computers—this revolution is advancing much faster than the ones before and it carries both promises and perils for humanity.
Some people may want to opt out of all this tracking, reduce their digital footprint and stay "off the grid." However, it is worth noting that data generation and storage can be used for great things --- things that make the world better, safer and fairer. For example, sharing electronic health records and social media data can help scientists better track and understand diseases, develop new cures and therapies, and understand the safety and efficacy profiles of medicines and vaccines.
While full of promise, big data is not without its pitfalls. Data are often not interoperable or easily integrated. You can use your credit card practically anywhere in the world, but you cannot easily port your electronic health record to the doctor or hospital across the street, for example.
Data quality can also be poor. It is dependent on the person entering it. My electronic health record at one point said I was male, and I was pregnant at the time. No doctors or nurses seemed to notice. The problem is worse on a global level. For example, causes of death can be coded differently by country and village. Take HIV patients: they often develop secondary infections, like TB. Do you record the cause of death as TB or HIV? There isn't global consistency, and political pressure from patient groups can exert itself on death records. Often, each group wants to say they have the most deaths so they can fundraise more money.
Data can be biased. More than 80 percent of genomic data comes from Caucasians. Only 14 percent is from Asians and 3.5 percent is from African and Hispanic populations. Thus, when scientists use genomic data to develop drugs or lab tests, they may create biased products that work for only some demographics. Take type 2 diabetes blood tests; some do not work well for African Americans. One study estimates that 650,000 African Americans may have undiagnosed diabetes, because a common blood test doesn't work for them. Using biased data in medicine can be a matter of life and death. Moreover, if genomic medicine benefits only "a privileged few," the practice raises concerns about unequal access.
Large companies are selling data that originated from you and you are not sharing in the wealth.
We need to think carefully and be transparent about the values embedded in our data, data analytics (algorithms), and data applications. Numbers are never neutral. Algorithms are always embedded with subjective normative values--sometimes purposely, sometimes not. To address this problem, we need ethicists who can audit databanks and algorithms to identify embedded norms, values and biases and help ensure they are addressed or at least transparently disclosed. Additionally, we need to determine how to let people opt out of certain types of data collection and uses—and not just at the beginning of a system, but also at any point in their lifetimes. There is a right to be forgotten, which hasn't been adequately operationalized in today's data sphere.
What do you think happens to all of these data collected about us? The short answer is the public doesn't really know. A lot of it looks like what is in a medical record—i.e. height, weight, pregnancy status, age, mental health, pulse, blood pressure, and illness symptoms--- yet, it isn't protected by HIPPA, like your medical record information.
And it is being consolidated into the hands of fewer and fewer big players. Large companies are selling data that originated from you and you are not sharing in the wealth.
A possible solution is to create an app, managed by a nonprofit or public benefit corporation, through which you could download and manage all the data collected about you. For example, you could download your credit card statements with all your purchasing habits, your Uber rides showing transit patterns, medical records, electric bills, every digital record you have and would like to download--into one application. You would then have the power to license pieces or the collection of your data to users for a small fee for one year at a time. Uses and users could be monitored and audited leveraging blockchain capabilities. After the year is up, you can withdraw access.
You could be your own data landlord. We could democratize big data and empower people to better control and manage the wealth of information collected about us. Why should only the big companies like Amazon and Apple profit off the new oil? Let's create an app so we can all manage our data wealth and maybe even become data barons—an app created by the people for the people.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. Christopher Martens, director of the Delaware Center for Cogntiive Aging Research and professor of kinesiology and applied physiology at the University of Delaware, and Dr. Ilona Matysiak, visiting scholar at Iowa State University and associate professor of sociology at Maria Grzegorzewska University.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
- Could this supplement help prevent Alzheimer's?
- Why you should care about smart senior towns
- Here's how to reverse being drunk
- Money can make you happy - if you're this type of person
- Personalized anxiety medicine
As a child, Wendy Borsari participated in a health study at Boston Children’s Hospital. She was involved because heart disease and sudden cardiac arrest ran in her family as far back as seven generations. When she was 18, however, the study’s doctors told her that she had a perfectly healthy heart and didn’t have to worry.
A couple of years after graduating from college, though, the Boston native began to experience episodes of near fainting. During any sort of strenuous exercise, my blood pressure would drop instead of increasing, she recalls.
She was diagnosed at 24 with hypertrophic cardiomyopathy. Although HCM is a commonly inherited heart disease, Borsari’s case resulted from a rare gene mutation, the MYH7 gene. Her mother had been diagnosed at 27, and Borsari had already lost her grandmother and two maternal uncles to the condition. After her own diagnosis, Borsari spent most of her free time researching the disease and “figuring out how to have this condition and still be the person I wanted to be,” she says.
Then, her son was found to have the genetic mutation at birth and diagnosed with HCM at 15. Her daughter, also diagnosed at birth, later suffered five cardiac arrests.
That changed Borsari’s perspective. She decided to become a patient advocate. “I didn’t want to just be a patient with the condition,” she says. “I wanted to be more involved with the science and the biopharmaceutical industry so I could be active in helping to make it better for other patients.”
She consulted on patient advocacy for a pharmaceutical and two foundations before coming to a company called Tenaya in 2021.
“One of our core values as a company is putting patients first,” says Tenaya's CEO, Faraz Ali. “We thought of no better way to put our money where our mouth is than by bringing in somebody who is affected and whose family is affected by a genetic form of cardiomyopathy to have them make sure we’re incorporating the voice of the patient.”
Biomedical corporations and government research agencies are now incorporating patient advocacy more than ever, says Alice Lara, president and CEO of the Sudden Arrhythmia Death Syndromes Foundation in Salt Lake City, Utah. These organizations have seen the effectiveness of including patient voices to communicate and exemplify the benefits that key academic research institutions have shown in their medical studies.
“From our side of the aisle,” Lara says, “what we know as patient advocacy organizations is that educated patients do a lot better. They have a better course in their therapy and their condition, and understanding the genetics is important because all of our conditions are genetic.”
Founded in 2016, Tenaya is advancing gene therapies and small molecule drugs in clinical trials for both prevalent and rare forms of heart disease, says Ali, the CEO.
The firm's first small molecule, now in a Phase 1 clinical trial, is intended to treat heart failure with preserved ejection fraction, where the amount of blood pumped by the heart is reduced due to the heart chambers becoming weak or stiff. The condition accounts for half or more of all heart failure in the U.S., according to Ali, and is growing quickly because it's closely associated with diabetes. It’s also linked with metabolic syndrome, or a cluster of conditions including high blood pressure, high blood sugar, excess body fat around the waist, and abnormal cholesterol levels.
“We have a novel molecule that is first in class and, to our knowledge, best in class to tackle that, so we’re very excited about the clinical trial,” Ali says.
The first phase of the trial is being performed with healthy participants, rather than people with the disease, to establish safety and tolerability. The researchers can also look for the drug in blood samples, which could tell them whether it's reaching its target. Ali estimates that, if the company can establish safety and that it engages the right parts of the body, it will likely begin dosing patients with the disease in 2024.
Tenaya’s therapy delivers a healthy copy of the gene so that it makes a copy of the protein missing from the patients' hearts because of their mutation. The study will start with adult patients, then pivot potentially to children and even newborns, Ali says, “where there is an even greater unmet need because the disease progresses so fast that they have no options.”
Although this work still has a long way to go, Ali is excited about the potential because the gene therapy achieved positive results in the preclinical mouse trial. This animal trial demonstrated that the treatment reduced enlarged hearts, reversed electrophysiological abnormalities, and improved the functioning of the heart by increasing the ejection fraction after the single-dose of gene therapy. That measurement remained stable to the end of the animals’ lives, roughly 18 months, Ali says.
He’s also energized by the fact that heart disease has “taken a page out of the oncology playbook” by leveraging genetic research to develop more precise and targeted drugs and gene therapies.
“Now we are talking about a potential cure of a disease for which there was no cure and using a very novel concept,” says Melind Desai of the Cleveland Clinic.
Tenaya’s second program focuses on developing a gene therapy to mitigate the leading cause of hypertrophic cardiomyopathy through a specific gene called MYPBC3. The disease affects approximately 600,000 patients in the U.S. This particular genetic form, Ali explains, affects about 115,000 in the U.S. alone, so it is considered a rare disease.
“There are infants who are dying within the first weeks to months of life as a result of this mutation,” he says. “There are also adults who start having symptoms in their 20s, 30s and 40s with early morbidity and mortality.” Tenaya plans to apply before the end of this year to get the FDA’s approval to administer an investigational drug for this disease humans. If approved, the company will begin to dose patients in 2023.
“We now understand the genetics of the heart much better,” he says. “We now understand the leading genetic causes of hypertrophic myopathy, dilated cardiomyopathy and others, so that gives us the ability to take these large populations and stratify them rationally into subpopulations.”
Melind Desai, MD, who directs Cleveland Clinic’s Hypertrophic Cardiomyopathy Center, says that the goal of Tenaya’s second clinical study is to help improve the basic cardiac structure in patients with hypertrophic cardiomyopathy related to the MYPBC3 mutation.
“Now we are talking about a potential cure of a disease for which there was no cure and using a very novel concept,” he says. “So this is an exciting new frontier of therapeutic investigation for MYPBC3 gene-positive patients with a chance for a cure.
Neither of Tenaya’s two therapies address the gene mutation that has affected Borsari and her family. But Ali sees opportunity down the road to develop a gene therapy for her particular gene mutation, since it is the second leading cause of cardiomyopathy. Treating the MYH7 gene is especially challenging because it requires gene editing or silencing, instead of just replacing the gene.
Wendy Borsari was diagnosed at age 24 with a commonly inherited heart disease. She joined Tenaya as a patient advocate in 2021.
Wendy Borsari
“If you add a healthy gene it will produce healthy copies,” Ali explains, “but it won’t stop the bad effects of the mutant protein the gene produces. You can only do that by silencing the gene or editing it out, which is a different, more complicated approach.”
Euan Ashley, professor of medicine and genetics at Stanford University and founding director of its Center for Inherited Cardiovascular Disease, is confident that we will see genetic therapies for heart disease within the next decade.
“We are at this really exciting moment in time where we have diseases that have been under-recognized and undervalued now being attacked by multiple companies with really modern tools,” says Ashley, author of The Genome Odyssey. “Gene therapies are unusual in the sense that they can reverse the cause of the disease, so we have the enticing possibility of actually reversing or maybe even curing these diseases.”
Although no one is doing extensive research into a gene therapy for her particular mutation yet, Borsari remains hopeful, knowing that companies such as Tenaya are moving in that direction.
“I know that’s now on the horizon,” she says. “It’s not just some pipe dream, but will happen hopefully in my lifetime or my kids’ lifetime to help them.”