Could Biologically Enhancing Our Morality Save Our Species?
As a species, we are prone to weaponizing. There is a famous anecdote from Wulf Schievenhovel, a German anthropologist who was working in the highlands of New Guinea studying a local tribe. One day, he offered two tribesmen a flight in an airplane. They duly accepted but showed up with two large stones. When he asked why, they told him that they wanted to drop them on a neighboring village. Ethologist Frans de Waal later remarked on this story that Schievenhovel had effectively "witnessed the invention of the bomb."
Today you don't have to be Putin or Kim Jong Un to pose an existential threat.
Modern technology has given us access to more than just rocks. In 2011, a Swedish man was arrested after attempting a nuclear fission in his kitchen. And in the inaugural issue of this magazine, my colleague Hank Greely raised a terrifying prospect:
"do-it-yourself hobbyists can use CRISPR [gene editing]… to change the genomes of whole species of living things – domestic or wild; animal, vegetable, or microbial – cheaply, easily, and before we even know it is happening."
In science fiction, it is typically governments that take over technologies and use them for evil. That risk is of course no fiction. It is an ongoing problem that we have addressed through institutions: democracies, constitutions, legal systems and international treaties, and groups working together as checks and balances. It isn't perfect, but it has worked (so far).
Today you don't have to be Putin or Kim Jong Un to pose an existential threat. We are rapidly acquiring the technological ability for individuals and groups not just to cause major harm, but to do so exactly as Hank said: "cheaply, easily, and before we even know it is happening."
How should we address this problem? Together with Ingmar Persson, a fellow philosophy professor at Gothenburg, Sweden, I have argued that while education, institutions and good policing are important, we may need to think more radically.
We could adapt our biology so that we can appreciate the suffering of foreign or future people in the same instinctive way we do our friends and neighbors.
We evolved, along with the New Guinea tribesmen, to care about our small group and to be suspicious of outsiders. We evolved to cooperate well within our group, at a size where we could keep an eye on free riders. And we evolved to have the ability, and occasionally the desire to harm others, but with a natural limit on the amount of harm we could do—at least before others could step in to prevent, punish or kill us.
Our limitations have also become apparent in another form of existential threat: resource depletion. Despite our best efforts at educating, nudging, and legislating on climate change, carbon dioxide emissions in 2017 are expected to come in at the highest ever following a predicted rise of 2 percent. Why? We aren't good at cooperating in larger groups where freeriding is not easily spotted. We also deal with problems in order of urgency. A problem close by is much more significant to us than a problem in the future. That's why even if we accept there is a choice between economic recession now or natural disasters and potential famine in the future, we choose to carry on drilling for oil. And if the disasters and famine are present day, but geographically distant, we still choose to carry on drilling.
So what is our radical solution? We propose that there is a need for what we call moral bioenhancement. That is, for seeking a biological intervention that can help us overcome our evolved moral limitations. For example, adapting our biology so that we can appreciate the suffering of foreign or future people in the same instinctive way we do our friends and neighbors. Or, in the case of individuals, in addressing the problem of psychopathy from a biological perspective.
There is no reason in principle why humans could not be genetically modified...to make them kinder, happier, more conscientious, altruistic and just.
We have been dramatically successful at modifying various moral characteristics of non-human animals. Over ten thousand years or so, we have turned wolves into dogs by selective breeding, and those dogs into breeds with behavioural as well as physical characteristics: certain breeds can be faithful, hard working, good tempered and intelligent (or the opposite). Scientists have manipulated the expression of genes in prairie voles to cause them to form a mate bond more quickly, and in monkeys to make them work harder. There is no reason in principle why humans could not be genetically modified using gene editing, or their brains modified in other ways, to make them kinder, happier, more conscientious, altruistic and just.
One objection is that this is a pipe dream: even if it is acceptable to do this, it is so unlikely to be achievable, it is not worth pursuing. However, research has shown that we are already morally modified. This is widely accepted when it comes to negative effects. For example, we all know that alcohol can lead people to aggressive or other destructive behaviours that they would not have countenanced sober. In a 2008 case, a retired UK teacher was cleared of child pornography charges after he successfully argued his behaviour was caused by a drug prescribed for his Parkinson's disease. There is also evidence that we can be morally modified in a more positive direction. For example, SSRIs like Prozac, a class of drugs widely used to treat depression, have been shown to act on healthy volunteers to make them more cooperative and less critical.
Another objection is that we need the negative aspects of our human character. We need people who can fight wars. We need to be able to blot out the suffering of the wider world: to experience it as we would if it applied to our nearest and dearest would be unbearable. This might be so. If aggressiveness and denial, or strong bonding to small communities, are important traits, it is important that we understand how, and to what degree, they should be controlled. It is unlikely that nature has dished out exactly the right levels of all morally relevant characteristics on an individual or population level. We don't claim to have all the answers to what characteristics we need to enhance, and what characteristics we need to diminish. But we see no reason to believe that the status quo is the optimum.
We haven't argued that we should go blindly in now with half-baked moral enhancers, or that we should forget about moral education, or legal solutions. Evolution has a built-in response to existential threats through adaptation. But adaptation takes generations and can't deal with threats that take out a whole population. Some threats are too important —and too urgent—to be left to chance.
Breakthrough therapies are breaking patients' banks. Key changes could improve access, experts say.
CSL Behring’s new gene therapy for hemophilia, Hemgenix, costs $3.5 million for one treatment, but helps the body create substances that allow blood to clot. It appears to be a cure, eliminating the need for other treatments for many years at least.
Likewise, Novartis’s Kymriah mobilizes the body’s immune system to fight B-cell lymphoma, but at a cost $475,000. For patients who respond, it seems to offer years of life without the cancer progressing.
These single-treatment therapies are at the forefront of a new, bold era of medicine. Unfortunately, they also come with new, bold prices that leave insurers and patients wondering whether they can afford treatment and, if they can, whether the high costs are worthwhile.
“Most pharmaceutical leaders are there to improve and save people’s lives,” says Jeremy Levin, chairman and CEO of Ovid Therapeutics, and immediate past chairman of the Biotechnology Innovation Organization. If the therapeutics they develop are too expensive for payers to authorize, patients aren’t helped.
“The right to receive care and the right of pharmaceuticals developers to profit should never be at odds,” Levin stresses. And yet, sometimes they are.
Leigh Turner, executive director of the bioethics program, University of California, Irvine, notes this same tension between drug developers that are “seeking to maximize profits by charging as much as the market will bear for cell and gene therapy products and other medical interventions, and payers trying to control costs while also attempting to provide access to medical products with promising safety and efficacy profiles.”
Why Payers Balk
Health insurers can become skittish around extremely high prices, yet these therapies often accompany significant overall savings. For perspective, the estimated annual treatment cost for hemophilia exceeds $300,000. With Hemgenix, payers would break even after about 12 years.
But, in 12 years, will the patient still have that insurer? Therein lies the rub. U.S. payers, are used to a “pay-as-you-go” model, in which the lifetime costs of therapies typically are shared by multiple payers over many years, as patients change jobs. Single treatment therapeutics eliminate that cost-sharing ability.
"As long as formularies are based on profits to middlemen…Americans’ healthcare costs will continue to skyrocket,” says Patricia Goldsmith, the CEO of CancerCare.
“There is a phenomenally complex, bureaucratic reimbursement system that has grown, layer upon layer, during several decades,” Levin says. As medicine has innovated, payment systems haven’t kept up.
Therefore, biopharma companies begin working with insurance companies and their pharmacy benefit managers (PBMs), which act on an insurer’s behalf to decide which drugs to cover and by how much, early in the drug approval process. Their goal is to make sophisticated new drugs available while still earning a return on their investment.
New Payment Models
Pay-for-performance is one increasingly popular strategy, Turner says. “These models typically link payments to evidence generation and clinically significant outcomes.”
A biotech company called bluebird bio, for example, offers value-based pricing for Zynteglo, a $2.8 million possible cure for the rare blood disorder known as beta thalassaemia. It generally eliminates patients’ need for blood transfusions. The company is so sure it works that it will refund 80 percent of the cost of the therapy if patients need blood transfusions related to that condition within five years of being treated with Zynteglo.
In his February 2023 State of the Union speech, President Biden proposed three pilot programs to reduce drug costs. One of them, the Cell and Gene Therapy Access Model calls on the federal Centers for Medicare & Medicaid Services to establish outcomes-based agreements with manufacturers for certain cell and gene therapies.
A mortgage-style payment system is another, albeit rare, approach. Amortized payments spread the cost of treatments over decades, and let people change employers without losing their healthcare benefits.
Only about 14 percent of all drugs that enter clinical trials are approved by the FDA. Pharma companies, therefore, have an exigent need to earn a profit.
The new payment models that are being discussed aren’t solutions to high prices, says Bill Kramer, senior advisor for health policy at Purchaser Business Group on Health (PBGH), a nonprofit that seeks to lower health care costs. He points out that innovative pricing models, although well-intended, may distract from the real problem of high prices. They are attempts to “soften the blow. The best thing would be to charge a reasonable price to begin with,” he says.
Instead, he proposes making better use of research on cost and clinical effectiveness. The Institute for Clinical and Economic Review (ICER) conducts such research in the U.S., determining whether the benefits of specific drugs justify their proposed prices. ICER is an independent non-profit research institute. Its reports typically assess the degrees of improvement new therapies offer and suggest prices that would reflect that. “Publicizing that data is very important,” Kramer says. “Their results aren’t used to the extent they could and should be.” Pharmaceutical companies tend to price their therapies higher than ICER’s recommendations.
Drug Development Costs Soar
Drug developers have long pointed to the onerous costs of drug development as a reason for high prices.
A 2020 study found the average cost to bring a drug to market exceeded $1.1 billion, while other studies have estimated overall costs as high as $2.6 billion. The development timeframe is about 10 years. That’s because modern therapeutics target precise mechanisms to create better outcomes, but also have high failure rates. Only about 14 percent of all drugs that enter clinical trials are approved by the FDA. Pharma companies, therefore, have an exigent need to earn a profit.
Skewed Incentives Increase Costs
Pricing isn’t solely at the discretion of pharma companies, though. “What patients end up paying has much more to do with their PBMs than the actual price of the drug,” Patricia Goldsmith, CEO, CancerCare, says. Transparency is vital.
PBMs control patients’ access to therapies at three levels, through price negotiations, pricing tiers and pharmacy management.
When negotiating with drug manufacturers, Goldsmith says, “PBMs exchange a preferred spot on a formulary (the insurer’s or healthcare provider’s list of acceptable drugs) for cash-base rebates.” Unfortunately, 25 percent of the time, those rebates are not passed to insurers, according to the PBGH report.
Then, PBMs use pricing tiers to steer patients and physicians to certain drugs. For example, Kramer says, “Sometimes PBMs put a high-cost brand name drug in a preferred tier and a lower-cost competitor in a less preferred, higher-cost tier.” As the PBGH report elaborates, “(PBMs) are incentivized to include the highest-priced drugs…since both manufacturing rebates, as well as the administrative fees they charge…are calculated as a percentage of the drug’s price.
Finally, by steering patients to certain pharmacies, PBMs coordinate patients’ access to treatments, control patients’ out-of-pocket costs and receive management fees from the pharmacies.
Therefore, Goldsmith says, “As long as formularies are based on profits to middlemen…Americans’ healthcare costs will continue to skyrocket.”
Transparency into drug pricing will help curb costs, as will new payment strategies. What will make the most impact, however, may well be the development of a new reimbursement system designed to handle dramatic, breakthrough drugs. As Kramer says, “We need a better system to identify drugs that offer dramatic improvements in clinical care.”
Each afternoon, kids walk through my neighborhood, on their way back home from school, and almost all of them are walking alone, staring down at their phones. It's a troubling site. This daily parade of the zombie children just can’t bode well for the future.
That’s one reason I felt like Gaia Bernstein’s new book was talking directly to me. A law professor at Seton Hall, Gaia makes a strong argument that people are so addicted to tech at this point, we need some big, system level changes to social media platforms and other addictive technologies, instead of just blaming the individual and expecting them to fix these issues.
Gaia’s book is called Unwired: Gaining Control Over Addictive Technologies. It’s fascinating and I had a chance to talk with her about it for today’s podcast. At its heart, our conversation is really about how and whether we can maintain control over our thoughts and actions, even when some powerful forces are pushing in the other direction.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
We discuss the idea that, in certain situations, maybe it's not reasonable to expect that we’ll be able to enjoy personal freedom and autonomy. We also talk about how to be a good parent when it sometimes seems like our kids prefer to be raised by their iPads; so-called educational video games that actually don’t have anything to do with education; the root causes of tech addictions for people of all ages; and what kinds of changes we should be supporting.
Gaia is Seton’s Hall’s Technology, Privacy and Policy Professor of Law, as well as Co-Director of the Institute for Privacy Protection, and Co-Director of the Gibbons Institute of Law Science and Technology. She’s the founding director of the Institute for Privacy Protection. She created and spearheaded the Institute’s nationally recognized Outreach Program, which educated parents and students about technology overuse and privacy.
Professor Bernstein's scholarship has been published in leading law reviews including the law reviews of Vanderbilt, Boston College, Boston University, and U.C. Davis. Her work has been selected to the Stanford-Yale Junior Faculty Forum and received extensive media coverage. Gaia joined Seton Hall's faculty in 2004. Before that, she was a fellow at the Engelberg Center of Innovation Law & Policy and at the Information Law Institute of the New York University School of Law. She holds a J.S.D. from the New York University School of Law, an LL.M. from Harvard Law School, and a J.D. from Boston University.
Gaia’s work on this topic is groundbreaking I hope you’ll listen to the conversation and then consider pre-ordering her new book. It comes out on March 28.