Why Blindness Will Be the First Disorder Cured by Futuristic Treatments
Stem cells and gene therapy were supposed to revolutionize biomedicine around the turn of the millennium and provide relief for desperate patients with incurable diseases. But for many, progress has been frustratingly slow. We still cannot, for example, regenerate damaged organs like a salamander regrows its tail, and genome engineering is more complicated than cutting and pasting letters in a word document.
"There are a number of things that make [the eye] ideal for new experimental therapies which are not true necessarily in other organs."
For blind people, however, the future of medicine is one step closer to reality. In December, the FDA approved the first gene therapy for an inherited disease—a mutation in the gene RPE65 that causes a rare form of blindness. Several clinical trials also show promise for treating various forms of retinal degeneration using stem cells.
"It's not surprising that the first gene therapy that was approved by the FDA was a therapy in the eye," says Bruce Conklin, a senior investigator at the San Francisco-based Gladstone Institutes, a nonprofit life science research organization, and a professor in the Medical Genetics and Molecular Pharmacology department at the University of California, San Francisco. "There are a number of things that make it ideal for new experimental therapies which are not true necessarily in other organs."
Physicians can easily see into the eye to check if a procedure worked or if it's causing problems. "The imaging technology within the eye is really unprecedented. You can't do this in someone's spinal cord or someone's brain cells or immune system," says Conklin, who is also deputy director of the Innovative Genomics Institute.
There's also a built-in control: researchers can test an intervention on one eye first. What's more, if something goes wrong, the risk of mortality is low, especially when compared to experimenting on the heart or brain. Most types of blindness are currently incurable, so the risk-to-reward ratio for patients is high. If a problem arises with the treatment their eyesight could get worse, but if they do nothing their vision will likely decline anyway. And if the treatment works, they may be able to see for the first time in years.
Gene Therapy
An additional appeal for testing gene therapy in the eye is the low risk for off-target effects, in which genome edits could result in unintended changes to other genes or in other cell types. There are a number of genes that are solely expressed in the eye and not in any other part of the body. Manipulating those genes will only affect cells in the eye, so concerns about the impact on other organs are minimal.
Ninety-three percent of patients who received the injection had improved vision just one month after treatment.
RPE65 is one such gene. It creates an enzyme that helps the eye convert light into an electrical signal that travels back to the brain. Patients with the mutation don't produce the enzyme, so visual signals are not processed. However, the retinal cells in the eye remain healthy for years; if you can restore the missing enzyme you can restore vision.
The newly approved therapy, developed by Spark Therapeutics, uses a modified virus to deliver RPE65 into the eye. A retinal surgeon injects the virus, which has been specially engineered to remove its disease-causing genes and instead carry the correct RPE65 gene, into the retina. There, it is sucked up by retinal pigment epithelial (RPE) cells. The RPE cells are a particularly good target for injection because their job is to eat up and recycle rogue particles. Once inside the cell, the virus slips into the nucleus and releases the DNA. The RPE65 gene then goes to work, using the cell's normal machinery to produce the needed enzyme.
In the most recent clinical trial, 93 percent of patients who received the injection—who range in age from 4 to 44—had improved vision just one month after treatment. So far, the benefits have lasted at least two years.
"It's an exciting time for this class of diseases, where these people have really not had treatments," says Spark president and co-founder, Katherine High. "[Gene therapy] affords the possibility of treatment for diseases that heretofore other classes of therapeutics really have not been able to help."
Stem Cells
Another benefit of the eye is its immune privilege. In order to let light in, the eye must remain transparent. As a result, its immune system is dampened so that it won't become inflamed if outside particles get in. This means the eye is much less likely to reject cell transplants, so patients do not need to take immunosuppressant drugs.
One study generating buzz is a clinical trial in Japan that is the first and, so far, only test of induced pluripotent stem cells in the eye.
Henry Klassen, an assistant professor at UC Irvine, is taking advantage of the eye's immune privilege to transplant retinal progenitor cells into the eye to treat retinitis pigmentosa, an inherited disease affecting about 1 in 4000 people that eventually causes the retina to degenerate. The disease can stem from dozens of different genetic mutations, but the result is the same: RPE cells die off over the course of a few decades, leaving the patient blind by middle age. It is currently incurable.
Retinal progenitor cells are baby retinal cells that develop naturally from stem cells and will turn into one of several types of adult retinal cells. When transplanted into a patient's eye, the progenitor cells don't replace the lost retinal cells, but they do secrete proteins and enzymes essential for eye health.
"At the stage we get the retinal tissue it's immature," says Klassen. "They still have some flexibility in terms of which mature cells they can turn into. It's that inherent flexibility that gives them a lot of power when they're put in the context of a diseased retina."
Klassen's spin-off company, jCyte, sponsored the clinical trial with support from the California Institute for Regenerative Medicine. The results from the initial study haven't been published yet, but Klassen says he considers it a success. JCyte is now embarking on a phase two trial to assess improvements in vision after the treatment, which will wrap up in 2021.
Another study generating buzz is a clinical trial in Japan that is the first and, so far, only test of induced pluripotent stem cells (iPSC) in the eye. iPSC are created by reprogramming a patient's own skin cells into stem cells, circumventing any controversy around embryonic stem cell sources. In the trial, led by Masayo Takahashi at RIKEN, the scientists transplant retinal pigment epithelial cells created from iPSC into the retinas of patients with age-related macular degeneration. The first woman to receive the treatment is doing well, and her vision is stable. However, the second patient suffered a swollen retina as a result of the surgery. Despite this recent setback, Takahashi said last week that the trial would continue.
Botched Jobs
Although recent studies have provided patients with renewed hope, the field has not been without mishap. Most notably, an article in the New England Journal of Medicine last March described three patients who experienced severe side effects after receiving stem cell injections from a Florida clinic to treat age-related macular degeneration. Following the initial article, other reports came out about similar botched treatments. Lawsuits have been filed against US Stem Cell, the clinic that conducted the procedure, and the FDA sent them a warning letter with a long list of infractions.
"One red flag is that the clinics charge patients to take part in the treatment—something extremely unusual for legitimate clinical trials."
Ajay Kuriyan, an ophthalmologist and retinal specialist at the University of Rochester who wrote the paper, says that because details about the Florida trial are scarce, it's hard to say why the treatment caused the adverse reaction. His guess is that the stem cells were poorly prepared and not up to clinical standards.
Klassen agrees that small clinics like US Stem Cell do not offer the same caliber of therapy as larger clinical trials. "It's not the same cells and it's not the same technique and it's not the same supervision and it's not under FDA auspices. It's just not the same thing," he says. "Unfortunately, to the patient it might sound the same, and that's the tragedy for me."
For patients who are interested in joining a trial, Kuriyan listed a few things to watch out for. "One red flag is that the clinics charge patients to take part in the treatment—something extremely unusual for legitimate clinical trials," he says. "Another big red flag is doing the procedure in both eyes" at the same time. Third, if the only treatment offered is cell therapy. "These clinics tend to be sort of stand-alone clinics, and that's not very common for an actual big research study of this scale."
Despite the recent scandal, Klassen hopes that the success of his trial and others will continue to push the field forward. "It just takes so many decades to move this stuff along, even when you're trying to simplify it as much as possible," he says. "With all the heavy lifting that's been done, I hope the world's got the patience to get this through."
New implants let paraplegics surf the web and play computer games
When I greeted Rodney Gorham, age 63, in an online chat session, he replied within seconds: “My pleasure.”
“Are you moving parts of your body as you type?” I asked.
This time, his response came about five minutes later: “I position the cursor with the eye tracking and select the same with moving my ankles.” Gorham, a former sales representative from Melbourne, Australia, living with amyotrophic lateral sclerosis, or ALS, a rare form of Lou Gehrig’s disease that impairs the brain’s nerve cells and the spinal cord, limiting the ability to move. ALS essentially “locks” a person inside their own body. Gorham is conversing with me by typing with his mind only–no fingers in between his brain and his computer.
The brain-computer interface enabling this feat is called the Stentrode. It's the brainchild of Synchron, a company backed by Amazon’s Jeff Bezos and Microsoft cofounder Bill Gates. After Gorham’s neurologist recommended that he try it, he became one of the first volunteers to have an 8mm stent, laced with small electrodes, implanted into his jugular vein and guided by a surgeon into a blood vessel near the part of his brain that controls movement.
After arriving at their destination, these tiny sensors can detect neural activity. They relay these messages through a small receiver implanted under the skin to a computer, which then translates the information into words. This minimally invasive surgery takes a day and is painless, according to Gorham. Recovery time is typically short, about two days.
When a paralyzed patient thinks about trying to move their arms or legs, the motor cortex will fire patterns that are specific to the patient’s thoughts.
When a paralyzed patient such as Gorham thinks about trying to move their arms or legs, the motor cortex will fire patterns that are specific to the patient’s thoughts. This pattern is detected by the Stentrode and relayed to a computer that learns to associate this pattern with the patient’s physical movements. The computer recognizes thoughts about kicking, making a fist and other movements as signals for clicking a mouse or pushing certain letters on a keyboard. An additional eye-tracking device controls the movement of the computer cursor.
The process works on a letter by letter basis. That’s why longer and more nuanced responses often involve some trial and error. “I have been using this for about two years, and I enjoy the sessions,” Gorham typed during our chat session. Zafar Faraz, field clinical engineer at Synchron, sat next to Gorham, providing help when required. Gorham had suffered without internet access, but now he looks forward to surfing the web and playing video games.
Gorham, age 63, has been enjoying Stentrode sessions for about two years.
Rodeny Dekker
The BCI revolution
In the summer of 2021, Synchron became the first company to receive the FDA’s Investigational Device Exemption, which allows research trials on the Stentrode in human patients. This past summer, the company, together with scientists from Icahn School of Medicine at Mount Sinai and the Neurology and Neurosurgery Department at Utrecht University, published a paper offering a framework for how to develop BCIs for patients with severe paralysis – those who can't use their upper limbs to type or use digital devices.
Three months ago, Synchron announced the enrollment of six patients in a study called COMMAND based in the U.S. The company will seek approval next year from the FDA to make the Stentrode available for sale commercially. Meanwhile, other companies are making progress in the field of BCIs. In August, Neuralink announced a $280 million financing round, the biggest fundraiser yet in the field. Last December, Synchron announced a $75 million financing round. “One thing I can promise you, in five years from now, we’re not going to be where we are today. We're going to be in a very different place,” says Elad I. Levy, professor of neurosurgery and radiology at State University of New York in Buffalo.
The risk of hacking exists, always. Cybercriminals, for example, might steal sensitive personal data for financial reasons, blackmailing, or to spread malware to other connected devices while extremist groups could potentially hack BCIs to manipulate individuals into supporting their causes or carrying out actions on their behalf.
“The prospect of bestowing individuals with paralysis a renewed avenue for communication and motor functionality is a step forward in neurotech,” says Hayley Nelson, a neuroscientist and founder of The Academy of Cognitive and Behavioral Neuroscience. “It is an exciting breakthrough in a world of devastating, scary diseases,” says Neil McArthur, a professor of philosophy and director of the Centre for Professional and Applied Ethics at the University of Manitoba. “To connect with the world when you are trapped inside your body is incredible.”
While the benefits for the paraplegic community are promising, the Stentrode’s long-term effectiveness and overall impact needs more research on safety. “Potential risks like inflammation, damage to neural tissue, or unexpected shifts in synaptic transmission due to the implant warrant thorough exploration,” Nelson says.
There are also concens about data privacy concerns and the policies of companies to safeguard information processed through BCIs. “Often, Big Tech is ahead of the regulators because the latter didn’t envisage such a turn of events...and companies take advantage of the lack of legal framework to push forward,” McArthur says. Hacking is another risk. Cybercriminals could steal sensitive personal data for financial reasons, blackmailing, or to spread malware to other connected devices. Extremist groups could potentially hack BCIs to manipulate individuals into supporting their causes or carrying out actions on their behalf.
“We have to protect patient identity, patient safety and patient integrity,” Levy says. “In the same way that we protect our phones or computers from hackers, we have to stay ahead with anti-hacking software.” Even so, Levy thinks the anticipated benefits for the quadriplegic community outweigh the potential risks. “We are on the precipice of an amazing technology. In the future, we would be able to connect patients to peripheral devices that enhance their quality of life.”
In the near future, the Stentrode could enable patients to use the Stentrode to activate their wheelchairs, iPods or voice modulators. Synchron's focus is on using its BCI to help patients with significant mobility restrictions—not to enhance the lives of healthy people without any illnesses. Levy says we are not prepared for the implications of endowing people with superpowers.
I wondered what Gorham thought about that. “Pardon my question, but do you feel like you have sort of transcended human nature, being the first in a big line of cybernetic people doing marvelous things with their mind only?” was my last question to Gorham.
A slight smile formed on his lips. In less than a minute, he typed: “I do a little.”
Leading XPRIZE Healthspan and Beating Negativity with Dr. Peter Diamandis
A new competition by the XPRIZE Foundation is offering $101 million to researchers who discover therapies that give a boost to people aged 65-80 so their bodies perform more like when they were middle-aged.
For today’s podcast episode, I talked with Dr. Peter Diamandis, XPRIZE’s founder and executive chairman. Under Peter’s leadership, XPRIZE has launched 27 previous competitions with over $300 million in prize purses. The latest contest aims to enhance healthspan, or the period of life when older people can play with their grandkids without any restriction, disability or disease. Such breakthroughs could help prevent chronic diseases that are closely linked to aging. These illnesses are costly to manage and threaten to overwhelm the healthcare system, as the number of Americans over age 65 is rising fast.
In this competition, called XPRIZE Healthspan, multiple awards are available, depending on what’s achieved, with support from the nonprofit Hevolution Foundation and Chip Wilson, the founder of Lululemon and nonprofit SOLVE FSHD. The biggest prize, $81 million, is for improvements in cognition, muscle and immunity by 20 years. An improvement of 15 years will net $71 million, and 10 years will net $61 million.
In our conversation for this episode, Peter talks about his plans for XPRIZE Healthspan and why exponential technologies make the current era - even with all of its challenges - the most exciting time in human history. We discuss the best mental outlook that supports a person in becoming truly innovative, as well as the downsides of too much risk aversion. We talk about how to overcome the negativity bias in ourselves and in mainstream media, how Peter has shifted his own mindset to become more positive over the years, how to inspire a culture of innovation, Peter’s personal recommendations for lifestyle strategies to live longer and healthier, the innovations we can expect in various fields by 2030, the future of education and the importance of democratizing tech and innovation.
In addition to Peter’s pioneering leadership of XPRIZE, he is also the Executive Founder of Singularity University. In 2014, he was named by Fortune as one of the “World’s 50 Greatest Leaders.” As an entrepreneur, he’s started over 25 companies in the areas of health-tech, space, venture capital and education. He’s Co-founder and Vice-Chairman of two public companies, Celularity and Vaxxinity, plus being Co-founder & Chairman of Fountain Life, a fully-integrated platform delivering predictive, preventative, personalized and data-driven health. He also serves as Co-founder of BOLD Capital Partners, a venture fund with a half-billion dollars under management being invested in exponential technologies and longevity companies. Peter is a New York Times Bestselling author of four books, noted during our conversation and in the show notes of this episode. He has degrees in molecular genetics and aerospace engineering from MIT and holds an M.D. from Harvard Medical School.
Show links
- Peter Diamandis bio
- New XPRIZE Healthspan
- Peter Diamandis books
- 27 XPRIZE competitions and counting
- Life Force by Peter Diamandis and Tony Robbins
- Peter Diamandis Twitter
- Longevity Insider newsletter – AI identifies the news
- Peter Diamandis Longevity Handbook
- Hevolution funding for longevity
XPRIZE Founder Peter Diamandis speaks with Mehmoud Khan, CEO of Hevolution Foundation, at the launch of XPRIZE Healthspan.
Hevolution Foundation