The Brave New World of Using DNA to Store Data
Netscape co-founder-turned-venture capitalist billionaire investor Marc Andreessen once posited that software was eating the world. He was right, and the takeover of software resulted in many things. One of them is data. Lots and lots and lots of data. In the previous two years, humanity created more data than it did during its entire existence combined, and the amount will only increase. Think about it: The hundreds of 50KB emails you write a day, the dozens of 10MB photos, the minute-long, 350MB 4K video you shoot on your iPhone X add up to vast quantities of information. All that information needs to be stored. And that's becoming an issue as data volume outpaces storage space.
The race is on to find another medium capable of storing massive amounts of information in as small a space as possible.
"There won't be enough silicon to store all the data we need. It's unlikely that we can make flash memory smaller. We have reached the physical limits," Victor Zhirnov, chief scientist at the Semiconductor Research Corporation, says. "We are facing a crisis that's comparable to the oil crisis in the 1970s. By 2050, we're going to need to store 10 to the 30 bits, compared to 10 to the 23 bits in 2016." That amount of storage space is equivalent to each of the world's seven billion people owning almost six trillion -- that's 10 to the 12th power -- iPhone Xs with 256GB storage space.
The race is on to find another medium capable of storing massive amounts of information in as small a space as possible. Zhirnov and other scientists are looking at the human body, looking to DNA. "Nature has nailed it," Luis Ceze, a professor in the Department of Computer Science and Engineering at the University of Washington, says. "DNA is a molecular storage medium that is remarkable. It's incredibly dense, many, many thousands of times denser than the densest technology that we have today. And DNA is remarkably general. Any information you can map in bits you can store in DNA." It's so dense -- able to store a theoretical maximum of 215 petabytes (215 million gigabytes) in a single gram -- that all the data ever produced could be stored in the back of a tractor trailer truck.
Writing DNA can be an energy-efficient process, too. Consider how the human body is constantly writing and rewriting DNA, and does so on a couple thousand calories a day. And all it needs for storage is a cool, dark place, a significant energy savings when compared to server farms that require huge amounts of energy to run and even more energy to cool.
Picture it: tiny specks of inert DNA made from silicon or another material, stored in cool, dark, dry areas, preserved for all time.
Researchers first succeeded in encoding data onto DNA in 2012, when Harvard University geneticists George Church and Sri Kosuri wrote a 52,000-word book on A, C, G, and T base pairs. Their method only produced 1.28 petabytes per gram of DNA, however, a volume exceeded the next year when a group encoded all 154 Shakespeare sonnets and a 26-second clip of Martin Luther King's "I Have A Dream" speech. In 2017, Columbia University researchers Yaniv Erlich and Dina Zielinski made the process 60 percent more efficient.
The limiting factor today is cost. Erlich said the work his team did cost $7,000 to encode and decode two megabytes of data. To become useful in a widespread way, the price per megabyte needs to plummet. Even advocates concede this point. "Of course it is expensive," Zhirnov says. "But look how much magnetic storage cost in the 1980s. What you store today in your iPhone for virtually nothing would cost many millions of dollars in 1982." There's reason to think the price will continue to fall. Genome readers are improving, getting cheaper, faster, and smaller, and genome sequencing becomes cheaper every year, too. Picture it: tiny specks of inert DNA made from silicon or another material, stored in cool, dark, dry areas, preserved for all time.
"It just takes a few minutes to double a sample. A few more minutes, you double it again. Very quickly, you have thousands or millions of new copies."
Plus, DNA has another advantage over more traditional forms of storage: It's very easy to reproduce. "If you want a second copy of a hard disk drive, you need components for a disk drive, hook both drives up to a computer, and copy. That's a pain," Nick Goldman, a researcher at the European Bioinformatics Institute, says. "DNA, once you have that first sample, it's a process that is absolutely routine in thousands of laboratories around the world to multiply that using polymerase chain reaction [which uses temperature changes or other processes]. It just takes a few minutes to double a sample. A few more minutes, you double it again. Very quickly, you have thousands or millions of new copies."
This ability to duplicate quickly and easily is a positive trait. But, of course, there's also the potential for danger. Does encoding on DNA, the very basis for life, present ethical issues? Could it get out of control and fundamentally alter life as we know it?
The chance is there, but it's remote. The first reason is that storage could be done with only two base pairs, which would serve as replacements for the 0 and 1 digits that make up all digital data. While doing so would decrease the possible density of the storage, it would virtually eliminate the risk that the sequences would be compatible with life.
But even if scientists and researchers choose to use four base pairs, other safeguards are in place that will prevent trouble. According to Ceze, the computer science professor, the snippets of DNA that they write are very short, around 150 nucleotides. This includes the title, the information that's being encoded, and tags to help organize where the snippet should fall in the larger sequence. Furthermore, they generally avoid repeated letters, which dramatically reduces the chance that a protein could be synthesized from the snippet.
"In the future, we'll know enough about someone from a sample of their DNA that we could make a specific poison. That's the danger, not those of us who want to encode DNA for storage."
Inevitably, some DNA will get spilt. "But it's so unlikely that anything that gets created for storage would have a biological interpretation that could interfere with the mechanisms going on in a living organism that it doesn't worry me in the slightest," Goldman says. "We're not of concern for the people who are worried about the ethical issues of synthetic DNA. They are much more concerned about people deliberately engineering anthrax. In the future, we'll know enough about someone from a sample of their DNA that we could make a specific poison. That's the danger, not those of us who want to encode DNA for storage."
In the end, the reality of and risks surrounding encoding on DNA are the same as any scientific advancement: It's another system that is vulnerable to people with bad intentions but not one that is inherently unethical.
"Every human action has some ethical implications," Zhirnov says. "I can use a hammer to build a house or I can use it to harm another person. I don't see why DNA is in any way more or less ethical."
If that house can store all the knowledge in human history, it's worth learning how to build it.
Editor's Note: In response to readers' comments that silicon is one of the earth's most abundant materials, we reached back out to our source, Dr. Victor Zhirnov. He stands by his statement about a coming shortage of silicon, citing this research. The silicon oxide found in beach sand is unsuitable for semiconductors, he says, because the cost of purifying it would be prohibitive. For use in circuit-making, silicon must be refined to a purity of 99.9999999 percent. So the process begins by mining for pure quartz, which can only be found in relatively few places around the world.
A sleek, four-foot tall white robot glides across a cafe storefront in Tokyo’s Nihonbashi district, holding a two-tiered serving tray full of tea sandwiches and pastries. The cafe’s patrons smile and say thanks as they take the tray—but it’s not the robot they’re thanking. Instead, the patrons are talking to the person controlling the robot—a restaurant employee who operates the avatar from the comfort of their home.
It’s a typical scene at DAWN, short for Diverse Avatar Working Network—a cafe that launched in Tokyo six years ago as an experimental pop-up and quickly became an overnight success. Today, the cafe is a permanent fixture in Nihonbashi, staffing roughly 60 remote workers who control the robots remotely and communicate to customers via a built-in microphone.
More than just a creative idea, however, DAWN is being hailed as a life-changing opportunity. The workers who control the robots remotely (known as “pilots”) all have disabilities that limit their ability to move around freely and travel outside their homes. Worldwide, an estimated 16 percent of the global population lives with a significant disability—and according to the World Health Organization, these disabilities give rise to other problems, such as exclusion from education, unemployment, and poverty.
These are all problems that Kentaro Yoshifuji, founder and CEO of Ory Laboratory, which supplies the robot servers at DAWN, is looking to correct. Yoshifuji, who was bedridden for several years in high school due to an undisclosed health problem, launched the company to help enable people who are house-bound or bedridden to more fully participate in society, as well as end the loneliness, isolation, and feelings of worthlessness that can sometimes go hand-in-hand with being disabled.
“It’s heartbreaking to think that [people with disabilities] feel they are a burden to society, or that they fear their families suffer by caring for them,” said Yoshifuji in an interview in 2020. “We are dedicating ourselves to providing workable, technology-based solutions. That is our purpose.”
Shota Kuwahara, a DAWN employee with muscular dystrophy. Ory Labs, Inc.
Wanting to connect with others and feel useful is a common sentiment that’s shared by the workers at DAWN. Marianne, a mother of two who lives near Mt. Fuji, Japan, is functionally disabled due to chronic pain and fatigue. Working at DAWN has allowed Marianne to provide for her family as well as help alleviate her loneliness and grief.Shota, Kuwahara, a DAWN employee with muscular dystrophy, agrees. "There are many difficulties in my daily life, but I believe my life has a purpose and is not being wasted," he says. "Being useful, able to help other people, even feeling needed by others, is so motivational."
When a patient is diagnosed with early-stage breast cancer, having surgery to remove the tumor is considered the standard of care. But what happens when a patient can’t have surgery?
Whether it’s due to high blood pressure, advanced age, heart issues, or other reasons, some breast cancer patients don’t qualify for a lumpectomy—one of the most common treatment options for early-stage breast cancer. A lumpectomy surgically removes the tumor while keeping the patient’s breast intact, while a mastectomy removes the entire breast and nearby lymph nodes.
Fortunately, a new technique called cryoablation is now available for breast cancer patients who either aren’t candidates for surgery or don’t feel comfortable undergoing a surgical procedure. With cryoablation, doctors use an ultrasound or CT scan to locate any tumors inside the patient’s breast. They then insert small, needle-like probes into the patient's breast which create an “ice ball” that surrounds the tumor and kills the cancer cells.
Cryoablation has been used for decades to treat cancers of the kidneys and liver—but only in the past few years have doctors been able to use the procedure to treat breast cancer patients. And while clinical trials have shown that cryoablation works for tumors smaller than 1.5 centimeters, a recent clinical trial at Memorial Sloan Kettering Cancer Center in New York has shown that it can work for larger tumors, too.
In this study, doctors performed cryoablation on patients whose tumors were, on average, 2.5 centimeters. The cryoablation procedure lasted for about 30 minutes, and patients were able to go home on the same day following treatment. Doctors then followed up with the patients after 16 months. In the follow-up, doctors found the recurrence rate for tumors after using cryoablation was only 10 percent.
For patients who don’t qualify for surgery, radiation and hormonal therapy is typically used to treat tumors. However, said Yolanda Brice, M.D., an interventional radiologist at Memorial Sloan Kettering Cancer Center, “when treated with only radiation and hormonal therapy, the tumors will eventually return.” Cryotherapy, Brice said, could be a more effective way to treat cancer for patients who can’t have surgery.
“The fact that we only saw a 10 percent recurrence rate in our study is incredibly promising,” she said.