Can Cultured Meat Save the Planet?

Can Cultured Meat Save the Planet?

Lab-grown meat in a Petri dish and test tube.

(© Dmytro Sukharevskyi/Fotolia)



In September, California governor Jerry Brown signed a bill mandating that by 2045, all of California's electricity will come from clean power sources. Technological breakthroughs in producing electricity from sun and wind, as well as lowering the cost of battery storage, have played a major role in persuading Californian legislators that this goal is realistic.

Even if the world were to move to an entirely clean power supply, one major source of greenhouse gas emissions would continue to grow: meat.

James Robo, the CEO of the Fortune 200 company NextEra Energy, has predicted that by the early 2020s, electricity from solar farms and giant wind turbines will be cheaper than the operating costs of coal-fired power plants, even when the cost of storage is included.

Can we therefore all breathe a sigh of relief, because technology will save us from catastrophic climate change? Not yet. Even if the world were to move to an entirely clean power supply, and use that clean power to charge up an all-electric fleet of cars, buses and trucks, one major source of greenhouse gas emissions would continue to grow: meat.

The livestock industry now accounts for about 15 percent of global greenhouse gas emissions, roughly the same as the emissions from the tailpipes of all the world's vehicles. But whereas vehicle emissions can be expected to decline as hybrids and electric vehicles proliferate, global meat consumption is forecast to be 76 percent greater in 2050 than it has been in recent years. Most of that growth will come from Asia, especially China, where increasing prosperity has led to an increasing demand for meat.

Changing Climate, Changing Diets, a report from the London-based Royal Institute of International Affairs, indicates the threat posed by meat production. At the UN climate change conference held in Cancun in 2010, the participating countries agreed that to allow global temperatures to rise more than 2°C above pre-industrial levels would be to run an unacceptable risk of catastrophe. Beyond that limit, feedback loops will take effect, causing still more warming. For example, the thawing Siberian permafrost will release large quantities of methane, causing yet more warming and releasing yet more methane. Methane is a greenhouse gas that, ton for ton, warms the planet 30 times as much as carbon dioxide.

The quantity of greenhouse gases we can put into the atmosphere between now and mid-century without heating up the planet beyond 2°C – known as the "carbon budget" -- is shrinking steadily. The growing demand for meat means, however, that emissions from the livestock industry will continue to rise, and will absorb an increasing share of this remaining carbon budget. This will, according to Changing Climate, Changing Diets, make it "extremely difficult" to limit the temperature rise to 2°C.

One reason why eating meat produces more greenhouse gases than getting the same food value from plants is that we use fossil fuels to grow grains and soybeans and feed them to animals. The animals use most of the energy in the plant food for themselves, moving, breathing, and keeping their bodies warm. That leaves only a small fraction for us to eat, and so we have to grow several times the quantity of grains and soybeans that we would need if we ate plant foods ourselves. The other important factor is the methane produced by ruminants – mainly cattle and sheep – as part of their digestive process. Surprisingly, that makes grass-fed beef even worse for our climate than beef from animals fattened in a feedlot. Cattle fed on grass put on weight more slowly than cattle fed on corn and soybeans, and therefore do burp and fart more methane, per kilogram of flesh they produce.

Richard Branson has suggested that in 30 years, we will look back on the present era and be shocked that we killed animals en masse for food.

If technology can give us clean power, can it also give us clean meat? That term is already in use, by advocates of growing meat at the cellular level. They use it, not to make the parallel with clean energy, but to emphasize that meat from live animals is dirty, because live animals shit. Bacteria from the animals' guts and shit often contaminates the meat. With meat cultured from cells grown in a bioreactor, there is no live animal, no shit, and no bacteria from a digestive system to get mixed into the meat. There is also no methane. Nor is there a living animal to keep warm, move around, or grow body parts that we do not eat. Hence producing meat in this way would be much more efficient, and much cleaner, in the environmental sense, than producing meat from animals.

There are now many startups working on bringing clean meat to market. Plant-based products that have the texture and taste of meat, like the "Impossible Burger" and the "Beyond Burger" are already available in restaurants and supermarkets. Clean hamburger meat, fish, dairy, and other animal products are all being produced without raising and slaughtering a living animal. The price is not yet competitive with animal products, but it is coming down rapidly. Just this week, leading officials from the Food and Drug Administration and the U.S. Department of Agriculture have been meeting to discuss how to regulate the expected production and sale of meat produced by this method.

When Kodak, which once dominated the sale and processing of photographic film, decided to treat digital photography as a threat rather than an opportunity, it signed its own death warrant. Tyson Foods and Cargill, two of the world's biggest meat producers, are not making the same mistake. They are investing in companies seeking to produce meat without raising animals. Justin Whitmore, Tyson's executive vice-president, said, "We don't want to be disrupted. We want to be part of the disruption."

That's a brave stance for a company that has made its fortune from raising and killing tens of billions of animals, but it is also an acknowledgement that when new technologies create products that people want, they cannot be resisted. Richard Branson, who has invested in the biotech company Memphis Meats, has suggested that in 30 years, we will look back on the present era and be shocked that we killed animals en masse for food. If that happens, technology will have made possible the greatest ethical step forward in the history of our species, saving the planet and eliminating the vast quantity of suffering that industrial farming is now inflicting on animals.

Peter Singer
Peter Singer is Ira W. DeCamp Professor of Bioethics, Princeton University, and Laureate Professor at the University of Melbourne. Author, co-author and editor of fifty books on a range of topics, he is best known for Animal Liberation, widely considered to be the founding statement of the animal rights movement, and for The Life You Can Save, which led him to found the charity of the same name. His other books include Practical Ethics, The Most Good You Can Do, and, with Katarzyna de Lazari-Radek, Utilitarianism: A Very Short Introduction. In 2005, TIME named him one of the World’s 100 Most Influential People. He divides his time between New York City and Melbourne, Australia.
Tech and the science of dogs’ olfactory receptors combat avalanche threats

Avalanche rescue dogs train to find and dig out people buried in snow slides

Sarah McLear

Two-and-a-half year-old Huckleberry, a blue merle Australian shepherd, pulls hard at her leash; her yelps can be heard by skiers and boarders high above on the chairlift that carries them over the ski patrol hut to the top of the mountain. Huckleberry is an avalanche rescue dog — or avy dog, for short. She lives and works with her owner and handler, a ski patroller at Breckenridge Ski Resort in Colorado. As she watches the trainer play a game of hide-and-seek with six-month-old Lume, a golden retriever and avy dog-in-training, Huckleberry continues to strain on her leash; she loves the game. Hide-and-seek is one of the key training methods for teaching avy dogs the rescue skills they need to find someone caught in an avalanche — skier, snowmobiler, hiker, climber.

Lume’s owner waves a T-shirt in front of the puppy. While another patroller holds him back, Lume’s owner runs away and hides. About a minute later — after a lot of barking — Lume is released and commanded to “search.” He springs free, running around the hut to find his owner who reacts with a great amount of excitement and fanfare. Lume’s scent training will continue for the rest of the ski season (Breckenridge plans operating through May or as long as weather permits) and through the off-season. “We make this game progressively harder by not allowing the dog watch the victim run away,” explains Dave Leffler, Breckenridge's ski patroller and head of the avy dog program, who has owned, trained and raised many of them. Eventually, the trainers “dig an open hole in the snow to duck out of sight and gradually turn the hole into a cave where the dog has to dig to get the victim,” explains Leffler.

Keep Reading Keep Reading
Cari Shane
Cari Shane is a freelance journalist (and Airbnb Superhost). Originally from Manhattan, Shane lives carless in Washington, DC and writes on a variety of subjects for a wide array of media outlets including, Scientific American, National Geographic, Discover, Business Insider, Fast Company, Fortune and Fodor’s.
Living with someone changes your microbiome, new research shows

For the first time, research has shown that bacteria of the microbiome are transmitted between many individuals, not just infants and their mothers, in ways that can’t be explained by having the same diet or geography.

Adobe Stock

Some roommate frustration can be expected, whether it’s a sink piled high with crusty dishes or crumbs where a clean tabletop should be. Now, research suggests a less familiar issue: person-to-person transmission of shared bacterial strains in our gut and oral microbiomes. For the first time, the lab of Nicola Segata, a professor of genetics and computational biology at the University of Trento, located in Italy, has shown that bacteria of the microbiome are transmitted between many individuals, not just infants and their mothers, in ways that can’t be explained by their shared diet or geography.

It’s a finding with wide-ranging implications, yet frustratingly few predictable outcomes. Our microbiomes are an ever-growing and changing collection of helpful and harmful bacteria that we begin to accumulate the moment we’re born, but experts are still struggling to unravel why and how bacteria from one person’s gut or mouth become established in another person’s microbiome, as opposed to simply passing through.

Keep Reading Keep Reading
Robin Donovan
Robin Donovan is a science journalist based in Portland, Oregon. Her work has appeared in Vice, Neo.Life, The Scientist, Willamette Week and many other outlets.