China vs. the West: Who Will Lead the Way in Embryo Editing Research?
Junjiu Huang and his team performed a miracle. A few miracles, actually. The researchers at Sun Yat-sen University in Guangzhou, China used the precise new DNA editing tool called CRISPR-CAS9 to edit a human embryo, replacing a single base. In doing so, they edited out beta-thalassemia, a blood disorder that reduces the production of hemoglobin, which can result in pale skin, fatigue, higher risk of blood clots, and other symptoms.
The race is on, and it's one everyone is going to try to win.
Huang's group, which did not respond to an email requesting comment for this story, injected 86 embryos and observed them for 48 hours. After that period -- a time long enough for CRISPR to split the DNA, other molecules to replace the base, and the embryos to grow to eight cells -- they tested 54 of the 71 that survived. Of those, only a few had the replacement base, according to a report of the study published in Protein & Cell. The experiment stopped there as the embryos, which had been acquired from local fertility clinics, were non-viable and not implanted.
But procreation was not the point. Far from it, in fact. The point was to demonstrate that it could be done, that in some far off (or not so far off) future, doctors could use CRISPR to eliminate diseases like Tay-Sachs, Huntington's, and cystic fibrosis that are caused by genetic mutations. Going a step further, perhaps they could eventually even tailor embryos that will develop into adults with specific traits like height and IQ.
Experts agree that we are far from that point, years if not decades away from leveraging CRISPR to cure diseases and decades if not centuries from being able to build designer babies. In that frame, Huang's achievement is just a small step, a blip on the timeline of human achievement. But seen in another light, it's yet another sign that we need to start talking about DNA modification now, establishing protocols, procedures, and plans that guide the subject before we get so far down the road that momentum is impossible to stop.
"The Chinese generally don't have the religious objections to embryo research that have held back research in the West."
It's essential to do so now because the idea of DNA modification -- a realization that humanity can control its evolution -- is compelling and attractive. Imagine a world where doctors and scientists could get rid of disease before it begins or ensure a baby would arrive with an Einstein-level IQ. That's intriguing, and also terrifying. What are the rules? How do we know when to stop? What guides the process? And how can we prevent mistakes or unwanted mutations? To borrow from another famous quotation, with great power comes great responsibility.
These aren't questions for Huang and the Chinese scientific community alone. A team from Oregon recently edited viable human embryos, eliminating a mutation that can lead to heart failure while preventing any unintended consequences. Just as importantly, every embryo they edited produced the intended genetic changes, a vital step since a partial success rate, known as mosaicism, could have devastating consequences to a future child.
In London at the Francis Crick Institute, researcher Kathy Niakan used CRISPR-CAS9 to "turn off" a gene that produces the protein OCT4. Without the protein, the fertilized egg could not produce a blastocyst, which is a key structure in early mammalian development that gives rise to an embryo and placenta. The recent study wasn't designed to go further, but the use of CRISPR was important. "One way to find out what a gene does in the developing embryo is to see what happens when it isn't working," said Dr. Niakan, who was the first scientist in the world to be granted regulatory approval to edit the genes of a human embryo for research. "Now that we have demonstrated an efficient way of doing this, we hope that other scientists will use it to find out the roles of other genes. If we knew the key genes that embryos need to develop successfully, we could improve IVF treatments and understand some causes of pregnancy failure. It may take many years to achieve such an understanding. Our study is just the first step."
The point is, CRISPR is here and it's not going anywhere. Scientists will continue to use it to learn about how humans develop. Yet different rules regarding CRISPR and embryo research in countries around the world will impact who gets there first. "I've heard the U.S.-China gene editing research parallel paths as Sputnik 2.0," said Kevin Doxzen, Science Communications Specialist at the University of California, Berkeley's Innovative Genomics Institute. The race is on, and it's one everyone is going to try to win.
Based on number of researchers and ease of regulations, the Chinese are the favorites to advance the science the furthest, the fastest.
Based on number of researchers and ease of regulations, the Chinese are the favorites to advance the science the furthest, the fastest. "The Chinese generally don't have the religious (predominantly Christian) or moral objections to embryo research that have held back research in the West," said Dr. Julian Savulescu, the Uehiro Professor of Practical Ethics and Director of the Oxford Martin Programme on Collective Responsibility for Infectious Disease at the University of Oxford. "This kind of research should be done, with the right sort of ethical oversight. The concern over China leading the way is that institutional oversight mechanisms are probably not as developed as in the West but so far, there is no evidence of breaches in standards of research ethics around the published research."
Or, put another way by bioethicist Dr. Arthur Caplan, founding director of NYU Langone Health's Division of Medical Ethics: "The Chinese, because they don't care and don't have moral reservations about embryo work, are doing what they want." This lack of aversion to working with embryos manifests itself in a couple of ways. The absence of moral qualms is one. Funding is another. Huang's study, and others like it, receive funding from the government. His, for example, was supported by two grants from the National Basic Research Program and three from the National Natural Science Foundation of China.
The U.S., on the other hand, bans any federal funding for research using human embryos. A law passed in 1996 states that federal dollars can't be used for: "research in which a human embryo or embryos are destroyed, discarded, or knowingly subjected to risk of injury or death greater than that allowed for research on fetuses." This restriction can shift incentives as many private institutions or commercial enterprises may have financial motivations or other goals beyond furthering basic research for the sake of general knowledge.
Embryo gene modification recently performed in the U.K. would merit 15 years in prison in Australia.
The embryo research ban is even more strict elsewhere. The Oviedo Convention, enacted in 1997, effectively prohibits germline engineering in members of the European Union. "In Italy, you can't destroy an embryo for any reason," said Alessandro Bertero, a postdoctoral fellow at the University of Washington's Department of Pathology who used to study in Italy. "It's illegal, and you'll go to jail." Later, Bertero was one of the researchers who worked with Dr. Niakan in London, an investigation that was allowed by the UK's Human Fertilisation and Embryology Authority. (In Australia, Niakan and her colleagues would face 15 years in jail due to the 2002 Prohibition of Human Cloning Act, which prohibits altering the genomes of embryonic cells.)
Despite the moral and legal reservations in the Western world, every person I spoke with for this story believed that better, more advanced studies and learning is happening in the U.S. and Europe. "The best studies in my opinion are from the labs in California and Oregon," Bertero said. "The quality of the work [in the Chinese study] – not being critical, but to be scientifically critical -- was just quick and dirty. It was, 'Let's just show that we have done it and get it out.' That doesn't mean that the quality of the work was good."
"If the Chinese or someone else starts beating our brains out, we're not going to want to stand by idly and not do these things."
How long that remains the case, however, is an open question. A significant number of groups in China are working on germline editing in human embryos. The concern is that the Chinese will emerge as a leader sooner rather than later because they can do research with embryos more easily than their Western counterparts.
For Caplan, the NYU professor, the embryo ban in the U.S. isn't based on science; it's rooted in something else. "It's 96 percent political," he said, laughing. "It has basically ground to a halt because no one wants to see repercussions take place if federal funding is involved. The NIH isn't involved. And they won't be."
What, in his mind, would get Americans to start realizing the benefits that embryo research would provide? "The perception that other countries were moving quickly to get the advantages of CRISPR and other gene modification techniques, finding more industrial and more medical purposes," he said. "If the Chinese or someone else starts beating our brains out, we're not going to want to stand by idly and not do these things."
Doing so would involve difficult conversations about the role of embryos in research. But these are philosophical questions that need to be approached at some point. From a U.S. perspective, doing so sooner while the American scientists still hold the technological and informational edge, is vital. Ignoring the issue doesn't make it go away.
Experts think a few changes should be made. The ban on federal funding should be lifted. Scientists and regulators should push for things like allowing federal funds to be used for the creation of new embryos for research purposes and the use of spare IVF embryos for research when the embryo would not be implanted into a woman. (Privately funded scientists can proceed in states that encourage embryonic stem cell research, like New York, New Jersey, and California, but not in restrictive ones like Louisiana and South Dakota, which prohibit creating or destroying embryos for research.) Policymakers could ban reproductive gene editing for now but look at it again after a certain period. A highly anticipated report issued earlier this year from an international guidance committee left the door open to eventual clinical trials with edited embryos. As of now, however, Congress will not allow the Food and Drug Administration to consider such trials. This is the future and it's the scientific community's responsibility to develop the ethical framework now.
"The US and Europe have the technological history and capacity to lead this research and should do so, ethically. We ought to be revising our laws and ethical guidelines to facilitate this kind of research," Professor Savulescu said. "But the challenge is to think constructively and ethically about this new technology, and to be leaders, not followers."
This episode is about a health metric you may not have heard of before: heart rate variability, or HRV. This refers to the small changes in the length of time between each of your heart beats.
Scientists have known about and studied HRV for a long time. In recent years, though, new monitors have come to market that can measure HRV accurately whenever you want.
Five months ago, I got interested in HRV as a more scientific approach to finding the lifestyle changes that work best for me as an individual. It's at the convergence of some important trends in health right now, such as health tech, precision health and the holistic approach in systems biology, which recognizes how interactions among different parts of the body are key to health.
But HRV is just one of many numbers worth paying attention to. For this episode of Making Sense of Science, I spoke with psychologist Dr. Leah Lagos; Dr. Jessilyn Dunn, assistant professor in biomedical engineering at Duke; and Jason Moore, the CEO of Spren and an app called Elite HRV. We talked about what HRV is, research on its benefits, how to measure it, whether it can be used to make improvements in health, and what researchers still need to learn about HRV.
*Talk to your doctor before trying anything discussed in this episode related to HRV and lifestyle changes to raise it.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Show notes
Spren - https://www.spren.com/
Elite HRV - https://elitehrv.com/
Jason Moore's Twitter - https://twitter.com/jasonmooreme?lang=en
Dr. Jessilyn Dunn's Twitter - https://twitter.com/drjessilyn?lang=en
Dr. Dunn's study on HRV, flu and common cold - https://jamanetwork.com/journals/jamanetworkopen/f...
Dr. Leah Lagos - https://drleahlagos.com/
Dr. Lagos on Star Talk - https://www.youtube.com/watch?v=jC2Q10SonV8
Research on HRV and intermittent fasting - https://pubmed.ncbi.nlm.nih.gov/33859841/
Research on HRV and Mediterranean diet - https://medicalxpress.com/news/2010-06-twin-medite...:~:text=Using%20data%20from%20the%20Emory,eating%20a%20Western%2Dtype%20diet
Devices for HRV biofeedback - https://elitehrv.com/heart-variability-monitors-an...
Benefits of HRV biofeedback - https://pubmed.ncbi.nlm.nih.gov/32385728/
HRV and cognitive performance - https://www.frontiersin.org/articles/10.3389/fnins...
HRV and emotional regulation - https://pubmed.ncbi.nlm.nih.gov/36030986/
Fortune article on HRV - https://fortune.com/well/2022/12/26/heart-rate-var...
Ever since he was a baby, Sharon Wong’s son Brandon suffered from rashes, prolonged respiratory issues and vomiting. In 2006, as a young child, he was diagnosed with a severe peanut allergy.
"My son had a history of reacting to traces of peanuts in the air or in food,” says Wong, a food allergy advocate who runs a blog focusing on nut free recipes, cooking techniques and food allergy awareness. “Any participation in school activities, social events, or travel with his peanut allergy required a lot of preparation.”
Peanut allergies affect around a million children in the U.S. Most never outgrow the condition. The problem occurs when the immune system mistakenly views the proteins in peanuts as a threat and releases chemicals to counteract it. This can lead to digestive problems, hives and shortness of breath. For some, like Wong’s son, even exposure to trace amounts of peanuts could be life threatening. They go into anaphylactic shock and need to take a shot of adrenaline as soon as possible.
Typically, people with peanut allergies try to completely avoid them and carry an adrenaline autoinjector like an EpiPen in case of emergencies. This constant vigilance is very stressful, particularly for parents with young children.
“The search for a peanut allergy ‘cure’ has been a vigorous one,” says Claudia Gray, a pediatrician and allergist at Vincent Pallotti Hospital in Cape Town, South Africa. The closest thing to a solution so far, she says, is the process of desensitization, which exposes the patient to gradually increasing doses of peanut allergen to build up a tolerance. The most common type of desensitization is oral immunotherapy, where patients ingest small quantities of peanut powder. It has been effective but there is a risk of anaphylaxis since it involves swallowing the allergen.
"By the end of the trial, my son tolerated approximately 1.5 peanuts," Sharon Wong says.
DBV Technologies, a company based in Montrouge, France has created a skin patch to address this problem. The Viaskin Patch contains a much lower amount of peanut allergen than oral immunotherapy and delivers it through the skin to slowly increase tolerance. This decreases the risk of anaphylaxis.
Wong heard about the peanut patch and wanted her son to take part in an early phase 2 trial for 4-to-11-year-olds.
“We felt that participating in DBV’s peanut patch trial would give him the best chance at desensitization or at least increase his tolerance from a speck of peanut to a peanut,” Wong says. “The daily routine was quite simple, remove the old patch and then apply a new one. By the end of the trial, he tolerated approximately 1.5 peanuts.”
How it works
For DBV Technologies, it all began when pediatric gastroenterologist Pierre-Henri Benhamou teamed up with fellow professor of gastroenterology Christopher Dupont and his brother, engineer Bertrand Dupont. Together they created a more effective skin patch to detect when babies have allergies to cow's milk. Then they realized that the patch could actually be used to treat allergies by promoting tolerance. They decided to focus on peanut allergies first as the more dangerous.
The Viaskin patch utilizes the fact that the skin can promote tolerance to external stimuli. The skin is the body’s first defense. Controlling the extent of the immune response is crucial for the skin. So it has defense mechanisms against external stimuli and can promote tolerance.
The patch consists of an adhesive foam ring with a plastic film on top. A small amount of peanut protein is placed in the center. The adhesive ring is attached to the back of the patient's body. The peanut protein sits above the skin but does not directly touch it. As the patient sweats, water droplets on the inside of the film dissolve the peanut protein, which is then absorbed into the skin.
The peanut protein is then captured by skin cells called Langerhans cells. They play an important role in getting the immune system to tolerate certain external stimuli. Langerhans cells take the peanut protein to lymph nodes which activate T regulatory cells. T regulatory cells suppress the allergic response.
A different patch is applied to the skin every day to increase tolerance. It’s both easy to use and convenient.
“The DBV approach uses much smaller amounts than oral immunotherapy and works through the skin significantly reducing the risk of allergic reactions,” says Edwin H. Kim, the division chief of Pediatric Allergy and Immunology at the University of North Carolina, U.S., and one of the principal investigators of Viaskin’s clinical trials. “By not going through the mouth, the patch also avoids the taste and texture issues. Finally, the ability to apply a patch and immediately go about your day may be very attractive to very busy patients and families.”
Brandon Wong displaying origami figures he folded at an Origami Convention in 2022
Sharon Wong
Clinical trials
Results from DBV's phase 3 trial in children ages 1 to 3 show its potential. For a positive result, patients who could not tolerate 10 milligrams or less of peanut protein had to be able to manage 300 mg or more after 12 months. Toddlers who could already tolerate more than 10 mg needed to be able to manage 1000 mg or more. In the end, 67 percent of subjects using the Viaskin patch met the target as compared to 33 percent of patients taking the placebo dose.
“The Viaskin peanut patch has been studied in several clinical trials to date with promising results,” says Suzanne M. Barshow, assistant professor of medicine in allergy and asthma research at Stanford University School of Medicine in the U.S. “The data shows that it is safe and well-tolerated. Compared to oral immunotherapy, treatment with the patch results in fewer side effects but appears to be less effective in achieving desensitization.”
The primary reason the patch is less potent is that oral immunotherapy uses a larger amount of the allergen. Additionally, absorption of the peanut protein into the skin could be erratic.
Gray also highlights that there is some tradeoff between risk and efficacy.
“The peanut patch is an exciting advance but not as effective as the oral route,” Gray says. “For those patients who are very sensitive to orally ingested peanut in oral immunotherapy or have an aversion to oral peanut, it has a use. So, essentially, the form of immunotherapy will have to be tailored to each patient.” Having different forms such as the Viaskin patch which is applied to the skin or pills that patients can swallow or dissolve under the tongue is helpful.
The hope is that the patch’s efficacy will increase over time. The team is currently running a follow-up trial, where the same patients continue using the patch.
“It is a very important study to show whether the benefit achieved after 12 months on the patch stays stable or hopefully continues to grow with longer duration,” says Kim, who is an investigator in this follow-up trial.
"My son now attends university in Massachusetts, lives on-campus, and eats dorm food. He has so much more freedom," Wong says.
The team is further ahead in the phase 3 follow-up trial for 4-to-11-year-olds. The initial phase 3 trial was not as successful as the trial for kids between one and three. The patch enabled patients to tolerate more peanuts but there was not a significant enough difference compared to the placebo group to be definitive. The follow-up trial showed greater potency. It suggests that the longer patients are on the patch, the stronger its effects.
They’re also testing if making the patch bigger, changing the shape and extending the minimum time it’s worn can improve its benefits in a trial for a new group of 4-to-11 year-olds.
The future
DBV Technologies is using the skin patch to treat cow’s milk allergies in children ages 1 to 17. They’re currently in phase 2 trials.
As for the peanut allergy trials in toddlers, the hope is to see more efficacy soon.
For Wong’s son who took part in the earlier phase 2 trial for 4-to-11-year-olds, the patch has transformed his life.
“My son continues to maintain his peanut tolerance and is not affected by peanut dust in the air or cross-contact,” Wong says. ”He attends university in Massachusetts, lives on-campus, and eats dorm food. He still carries an EpiPen but has so much more freedom than before his clinical trial. We will always be grateful.”