The future of non-hormonal birth control: Antibodies can stop sperm in their tracks
Unwanted pregnancy can now be added to the list of preventions that antibodies may be fighting in the near future. For decades, really since the 1980s, engineered monoclonal antibodies have been knocking out invading germs — preventing everything from cancer to COVID. Sperm, which have some of the same properties as germs, may be next.
Not only is there an unmet need on the market for alternatives to hormonal contraceptives, the genesis for the original research was personal for the then 22-year-old scientist who led it. Her findings were used to launch a company that could, within the decade, bring a new kind of contraceptive to the marketplace.
The genesis
It’s Suruchi Shrestha’s research — published in Science Translational Medicine in August 2021 and conducted as part of her dissertation while she was a graduate student at the University of North Carolina at Chapel Hill — that could change the future of contraception for many women worldwide. According to a Guttmacher Institute report, in the U.S. alone, there were 46 million sexually active women of reproductive age (15–49) who did not want to get pregnant in 2018. With the overturning of Roe v. Wade this year, Shrestha’s research could, indeed, be life changing for millions of American women and their families.
Now a scientist with NextVivo, Shrestha is not directly involved in the development of the contraceptive that is based on her research. But, back in 2016 when she was going through her own problems with hormonal contraceptives, she “was very personally invested” in her research project, Shrestha says. She was coping with a long list of negative effects from an implanted hormonal IUD. According to the Mayo Clinic, those can include severe pelvic pain, headaches, acute acne, breast tenderness, irregular bleeding and mood swings. After a year, she had the IUD removed, but it took another full year before all the side effects finally subsided; she also watched her sister suffer the “same tribulations” after trying a hormonal IUD, she says.
For contraceptive use either daily or monthly, Shrestha says, “You want the antibody to be very potent and also cheap.” That was her goal when she launched her study.
Shrestha unshelved antibody research that had been sitting idle for decades. It was in the late 80s that scientists in Japan first tried to develop anti-sperm antibodies for contraceptive use. But, 35 years ago, “Antibody production had not been streamlined as it is now, so antibodies were very expensive,” Shrestha explains. So, they shifted away from birth control, opting to focus on developing antibodies for vaccines.
Over the course of the last three decades, different teams of researchers have been working to make the antibody more effective, bringing the cost down, though it’s still expensive, according to Shrestha. For contraceptive use either daily or monthly, she says, “You want the antibody to be very potent and also cheap.” That was her goal when she launched her study.
The problem
The problem with contraceptives for women, Shrestha says, is that all but a few of them are hormone-based or have other negative side effects. In fact, some studies and reports show that millions of women risk unintended pregnancy because of medical contraindications with hormone-based contraceptives or to avoid the risks and side effects. While there are about a dozen contraceptive choices for women, there are two for men: the condom, considered 98% effective if used correctly, and vasectomy, 99% effective. Neither of these choices are hormone-based.
On the non-hormonal side for women, there is the diaphragm which is considered only 87 percent effective. It works better with the addition of spermicides — Nonoxynol-9, or N-9 — however, they are detergents; they not only kill the sperm, they also erode the vaginal epithelium. And, there’s the non-hormonal IUD which is 99% effective. However, the IUD needs to be inserted by a medical professional, and it has a number of negative side effects, including painful cramping at a higher frequency and extremely heavy or “abnormal” and unpredictable menstrual flows.
The hormonal version of the IUD, also considered 99% effective, is the one Shrestha used which caused her two years of pain. Of course, there’s the pill, which needs to be taken daily, and the birth control ring which is worn 24/7. Both cause side effects similar to the other hormonal contraceptives on the market. The ring is considered 93% effective mostly because of user error; the pill is considered 99% effective if taken correctly.
“That’s where we saw this opening or gap for women. We want a safe, non-hormonal contraceptive,” Shrestha says. Compounding the lack of good choices, is poor access to quality sex education and family planning information, according to the non-profit Urban Institute. A focus group survey suggested that the sex education women received “often lacked substance, leaving them feeling unprepared to make smart decisions about their sexual health and safety,” wrote the authors of the Urban Institute report. In fact, nearly half (45%, or 2.8 million) of the pregnancies that occur each year in the US are unintended, reports the Guttmacher Institute. Globally the numbers are similar. According to a new report by the United Nations, each year there are 121 million unintended pregnancies, worldwide.
The science
The early work on antibodies as a contraceptive had been inspired by women with infertility. It turns out that 9 to 12 percent of women who are treated for infertility have antibodies that develop naturally and work against sperm. Shrestha was encouraged that the antibodies were specific to the target — sperm — and therefore “very safe to use in women.” She aimed to make the antibodies more stable, more effective and less expensive so they could be more easily manufactured.
Since antibodies tend to stick to things that you tell them to stick to, the idea was, basically, to engineer antibodies to stick to sperm so they would stop swimming. Shrestha and her colleagues took the binding arm of an antibody that they’d isolated from an infertile woman. Then, targeting a unique surface antigen present on human sperm, they engineered a panel of antibodies with as many as six to 10 binding arms — “almost like tongs with prongs on the tongs, that bind the sperm,” explains Shrestha. “We decided to add those grabbers on top of it, behind it. So it went from having two prongs to almost 10. And the whole goal was to have so many arms binding the sperm that it clumps it” into a “dollop,” explains Shrestha, who earned a patent on her research.
Suruchi Shrestha works in the lab with a colleague. In 2016, her research on antibodies for birth control was inspired by her own experience with side effects from an implanted hormonal IUD.
UNC - Chapel Hill
The sperm stays right where it met the antibody, never reaching the egg for fertilization. Eventually, and naturally, “Our vaginal system will just flush it out,” Shrestha explains.
“She showed in her early studies that [she] definitely got the sperm immotile, so they didn't move. And that was a really promising start,” says Jasmine Edelstein, a scientist with an expertise in antibody engineering who was not involved in this research. Shrestha’s team at UNC reproduced the effect in the sheep, notes Edelstein, who works at the startup Be Biopharma. In fact, Shrestha’s anti-sperm antibodies that caused the sperm to agglutinate, or clump together, were 99.9% effective when delivered topically to the sheep’s reproductive tracts.
The future
Going forward, Shrestha thinks the ideal approach would be delivering the antibodies through a vaginal ring. “We want to use it at the source of the spark,” Shrestha says, as opposed to less direct methods, such as taking a pill. The ring would dissolve after one month, she explains, “and then you get another one.”
Engineered to have a long shelf life, the anti-sperm antibody ring could be purchased without a prescription, and women could insert it themselves, without a doctor. “That's our hope, so that it is accessible,” Shrestha says. “Anybody can just go and grab it and not worry about pregnancy or unintended pregnancy.”
Her patented research has been licensed by several biotech companies for clinical trials. A number of Shrestha’s co-authors, including her lab advisor, Sam Lai, have launched a company, Mucommune, to continue developing the contraceptives based on these antibodies.
And, results from a small clinical trial run by researchers at Boston University Chobanian & Avedisian School of Medicine show that a dissolvable vaginal film with antibodies was safe when tested on healthy women of reproductive age. That same group of researchers earlier this year received a $7.2 million grant from the National Institute of Health for further research on monoclonal antibody-based contraceptives, which have also been shown to block transmission of viruses, like HIV.
“As the costs come down, this becomes a more realistic option potentially for women,” says Edelstein. “The impact could be tremendous.”
NASA Has the Technology to Save Us From an Asteroid Strike, But Congress Won’t Fund It
At the biannual Planetary Defense Conference earlier this year, NASA ran a simulation of an asteroid slamming into the center of Manhattan.
For several millennia now, we've been lucky, but our luck won't hold out forever.
The gathering of astronomers, planetary scientists, and FEMA disaster-response experts attempted a number of interventions that might be possible within a time window of eight years, the given warning period before impact.
Catastrophic asteroid crashes are not without precedent, and scientists say it's only a matter of time before another one occurs—that is, if we do nothing to prevent it. It's believed that a huge asteroid crash off the coast of Mexico's Yucatan Peninsula created a worldwide disaster that helped to speed the extinction of the dinosaurs 65 million years ago.
In 1908, a meteoroid less than 300 feet in diameter exploded in the air over the Tunguska region of Siberia, creating a shockwave that leveled trees for hundreds of square miles. It's a matter of sheer luck it didn't hit a major population center, where human casualties could have been enormous.
For several millennia now, we've been lucky, but our luck won't hold out forever. There are millions of asteroids circulating about in our solar system, some of them hundreds of miles across, and although the odds of a massive one crashing to Earth in the near future is statistically low, the devastation could be apocalyptic.
Back at the conference, the experts tried sending several spacecrafts to knock the asteroid off-course by slamming into it. They considered blasting it with nuclear weapons. They even considered painting it white so it absorbed less of the sun's energy, hoping that would shift the asteroid's trajectory. In the simulations, all of the interventions failed and the giant space rock crashed into Manhattan, killing 1.3 million people in a massive explosion that was 1,000 times more powerful than the Hiroshima bomb.
NEOCam is designed, tested, and ready to build, but the project is currently frozen because of a $40 million gap in NASA funding.
Given more time, the scientists said, they might have succeeded in preventing the disaster. However, with today's asteroid-hunting telescopes, it's not likely we would have more warning. Our current telescopes are not powerful enough to detect all the near-earth asteroids, nor are they positioned well enough for sufficient detection. As recently as last week, for example, an asteroid traveling 15 miles a second narrowly missed crashing into the Earth, and it was only noticed several days in advance.
Now for the good news: There is a new technology that could buy us the time we need, says MIT planetary sciences professor Richard P. Binzel and colleagues who attended the conference. The Near-Earth Object Camera, or NEOCam, designed by NASA's Jet Propulsion Laboratory, would detect more than 90 percent of nearby objects that are 420 feet across or larger, according to Binzel.
The powerful infrared telescope is designed to sit within the L1 Lagrange point, a stable location in space where the gravitational pulls of the Earth and the sun cancel each other out. From there, large space bodies could be detected early enough to give scientists decades of warning when an asteroid is heading for Earth. NEOCam is designed, tested, and ready to build, but the project is currently frozen because of a $40 million gap in NASA funding.
The status of NEOCam, according to Binzel, is a case-study in short-sightedness and a lack of leadership. Congress needs to raise NASA's Planetary Defense budget from its current $160 million to $200 million to get the telescope built and launched into space, a goal that would seem eminently doable within the strictures of 2020's $4.75 trillion government budget. But Binzel describes a current deadlock between NASA, Congress, and the Office of Management and Budget as a "cosmic game of chicken."
If we don't use our technology to defend the planet, "it would be the most epic failure in the history of science."
In an excruciatingly budget-conscious atmosphere, "No one wants to stick their neck out and take adult responsibility" for getting the funding allocated that would unfreeze the project, says Binzel. But, he adds, "We have a moral obligation to act."
NEOCam would not only spot the overwhelming majority of asteroids in Earth's vicinity, it would determine their size and pinpoint exactly where they are likely to strike the Earth. And it would allow us decades to act, according to Binzel. Repeated ramming by an international armada of specialized spacecraft could slightly change the trajectory of an asteroid, he says. Changing the trajectory only a tiny bit, given the scale of millions of miles and several decades for the course change to take effect, could cause an asteroid to miss the Earth altogether.
"So far we've been relying on luck," says Binzel, "but luck is not a plan." Now that we have the technology to discover what's careening through our space neighborhood, it's our ethical duty to deploy it. If we don't use our technology to gain the knowledge we need to defend the planet, Binzel concludes, "it would be the most epic failure in the history of science."
Should Congress green light the $40 million budget for the new asteroid-hunting telescope? @NASA #NASA #astroid— leapsmag (@leapsmag) 1564681293.0
A ‘Press Release from the Future’ Announces Service for Parents to Genetically Engineer Their Kids
Most people don't recognize how significantly and soon the genetic revolution will transform healthcare, the way we make babies, and the nature of the babies we make. The press release below is a thought experiment today. Within a decade, it won't be. * * *
Genomix Launches uDarwin, a New Business to Help Parents Optimize the Health, Well-Being, and Beneficial Traits of their Future Offspring
NEW YORK, July 29, 2029 /PRMediawire/ -- Genomix, a Caribbean-based health and wellness company, today announced the launch of uDarwin, a discrete, confidential service helping parents select and edit the pre-implanted embryos of their future children.
"Our mission is to help prospective parents realize their dream of parenthood in the safest manner possible while helping them optimize their future children's potential."
"We often fetishize nature," said Genomix Medical Director and Co-Founder Dr. Noam Heller, "but the traditional process of conception through sex confers risks on future children that can be significantly reduced through the careful and safe application of powerful new technologies."
Approximately three percent of all children are born with some type of harmful genetic mutation. Through its patented process of extracting eggs from the prospective mother, fertilizing these eggs with sperm from the intended father or from one of the superstar donor samples in the proprietary uDarwin gene bank, and screening up to twenty of these embryos prior to implantation, this risk can be brought down to under one percent.
"Having a baby is the most intimate and important experience in most people's lives," said Genomix CEO and co-founder Rich Azadian. "Our mission is to help prospective parents realize their dream of parenthood in the safest manner possible while helping them optimize their future children's potential."
In addition to screening pre-implanted embryos to significantly reduce disease risk, uDarwin uses its proprietary algorithm for the "polygenic scoring" of embryos to directionally predict potential future attributes including healthspan, height, IQ, personality style, and other complex genetic traits. Attributes once accepted as being the result of fate or chance can now increasingly be selected by parents from among their own natural embryos using this entirely safe process.
A premium product offering, uDarwin+, provides parents the opportunity to make up to three single gene mutations to their selected embryo to reduce a risk or confer a particular benefit. Among the most popular options for this service include increased resistance to HIV and other viruses, a greater ability to build muscle mass, and enhanced cognition. Additional edits will be made available as the science of human genome editing further advances.
Jamie Metzl's new book, Hacking Darwin: Genetic Engineering and the Future of Humanity, explores how the genetic revolution is transforming our healthcare, the way we make babies, and the nature of and babies we make, what this means for each of us, and what we must all do now to prepare for what's coming.
"uDarwin is proud to be the first company in the world offering the highest level of reproductive choice to parents," Mr. Azadian continued. "Genetic technologies are allowing us for the first time to crack the code of our health and identity. As pioneers in applying the most advanced genetic technologies to human reproduction, we recognize that prospective parents' desire for the services we offer exceeds societal levels of comfort with this technology. Our highest levels of customer service, comfort, and confidentiality ensure parents can secure massive benefits for their future children while avoiding unnecessary attention or any compromise of privacy."
All uDarwin services will be carried out in the company's state-of-the-art clinic aboard a super-luxury 500-foot yacht operating in international waters. After applying on the secure uDarwin website and gaining approval, clients are provided a date, time, and location to meet a company representative at a conveniently located Caribbean marina from where they will be shuttled to the uDarwin clinic. "Pioneers have always traveled beyond boundaries to create new possibilities," Mr. Azadian added. "Conceiving a child in a location where it can receive the greatest benefits of advanced science is no different."
"Pioneers have always traveled beyond boundaries to create new possibilities."
The cost of the basic uDawin service is $5 million, with half paid up front and half paid following the successful birth of a baby. Charges for uDarwin+, premium sperm or egg donors, surrogates, and other services are additional. "uDarwin is not for everyone," Mr. Azadian said, "but most parents of significant means understand that the benefits of optimal genetics far exceed almost any monetary cost."
"The genetic revolution has already begun," Medical Director Heller added. "The question for prospective parents is whether they want to be the last parents who left the health and identity of their future children to chance or the first to give their future children the greatest chance of optimal health and maximal fulfillment in the new reality that will arrive far sooner than most people appreciate."
If you could genetically alter your future children, would you? https://t.co/N0tqwX4Qd3— leapsmag (@leapsmag) 1564426548.0