Six Questions about the Kids' COVID Vaccine, Answered by an Infectious Disease Doctor

Six Questions about the Kids' COVID Vaccine, Answered by an Infectious Disease Doctor

The author, an infectious disease physician, pictured with his two daughters who are getting vaccinated against COVID-19.

Courtesy of Chin-Hong

I enthusiastically support the vaccination against COVID for children aged 5-11 years old. As an infectious disease doctor who took care of hundreds of COVID-19 patients over the past 20 months, I have seen the immediate and long-term consequences of COVID-19 on patients – and on their families. As a father of two daughters, I have lived through the fear and anxiety of protecting my kids at all cost from the scourges of the pandemic and worried constantly about bringing the virus home from work.

It is imperative that we vaccinate as many children in the community as possible. There are several reasons why. First children do get sick from COVID-19. Over the course of the pandemic in the U.S, more than 2 million children aged 5-11 have become infected, more than 8000 have been hospitalized, and more than 100 have died, making COVID one of the top 10 causes of pediatric deaths in this age group over the past year. Children are also susceptible to chronic consequences of COVID such as long COVID and multisystem inflammatory syndrome in children (MIS-C). Most studies demonstrate that 10-30% of children will develop chronic symptoms following COVID-19. These include complaints of brain fog, fatigue, trouble breathing, fever, headache, muscle and joint pains, abdominal pain, mood swings and even psychiatric disorders. Symptoms typically last from 4-8 weeks in children, with some reporting symptoms that persist for many months.

Keep Reading Keep Reading
Peter Chin-Hong
Dr. Peter Chin-Hong is Associate Dean for Regional Campuses and professor of medicine at UCSF School of Medicine. He is a medical educator who specializes in treating infectious diseases, particularly infections that develop in patients who have suppressed immune systems, such as solid organ and hematopoietic stem cell transplant recipients and HIV+ organ transplant recipients. He directs the immunocompromised host infectious diseases program at UCSF. His research focuses on donor derived infections in transplant recipients and molecular diagnostics of infectious diseases in patients with suppressed immune systems. He earned his undergraduate and medical degrees from Brown University, before completing an internal medicine residency and infectious diseases fellowship at UCSF, where he is Professor of Medicine and Director of the Yearlong Inquiry Program in the School of Medicine. He was the inaugural holder of the Academy of Medical Educators Endowed Chair for Innovation in Teaching.
Is there a robot nanny in your child's future?

Some researchers argue that active, playful engagement with a "robot nanny" for a few hours a day is better than several hours in front of a TV or with an iPad.

Andy Kelly

From ROBOTS AND THE PEOPLE WHO LOVE THEM: Holding on to Our Humanity in an Age of Social Robots by Eve Herold. Copyright © 2024 by the author and reprinted by permission of St. Martin’s Publishing Group.

Could the use of robots take some of the workload off teachers, add engagement among students, and ultimately invigorate learning by taking it to a new level that is more consonant with the everyday experiences of young people? Do robots have the potential to become full-fledged educators and further push human teachers out of the profession? The preponderance of opinion on this subject is that, just as AI and medical technology are not going to eliminate doctors, robot teachers will never replace human teachers. Rather, they will change the job of teaching.

Keep Reading Keep Reading
Eve Herold
Eve Herold is an award-winning science writer and consultant in the scientific and medical nonprofit space. A longtime communications and policy executive for scientific organizations, she currently serves as Director of Policy Research and Education for the Healthspan Action Coalition. She has written extensively about issues at the crossroads of science and society, including regenerative medicine, aging and longevity, medical implants, transhumanism, robotics and AI, and bioethical issues in leading-edge medicine. Her books include Stem Cell Wars and Beyond Human, and her latest book, Robots and the People Who Love Them, will be released in January 2024. Her work has appeared in Vice, Medium, The Washington Post and the Boston Globe, among others. She’s a frequent contributor to Leaps.org and is the recipient of the 2019 Arlene Eisenberg Award from the American Society of Journalists and Authors.
Fetuses can save their mothers' lives

Stem cells from a fetus can travel to the heart and regenerate the muscle, essentially saving a mother’s life.

Adobe Stock

Story by Big Think

In rare cases, a woman’s heart can start to fail in the months before or after giving birth. The all-important muscle weakens as its chambers enlarge, reducing the amount of blood pumped with each beat. Peripartum cardiomyopathy can threaten the lives of both mother and child. Viral illness, nutritional deficiency, the bodily stress of pregnancy, or an abnormal immune response could all play a role, but the causes aren’t concretely known.

Keep Reading Keep Reading
Ross Pomeroy
Steven Ross Pomeroy is the editor of RealClearScience. As a writer, Ross believes that his greatest assets are his insatiable curiosity and his ceaseless love for learning. Follow him on Twitter