Six Questions about the Kids' COVID Vaccine, Answered by an Infectious Disease Doctor

Six Questions about the Kids' COVID Vaccine, Answered by an Infectious Disease Doctor

The author, an infectious disease physician, pictured with his two daughters who are getting vaccinated against COVID-19.

Courtesy of Chin-Hong

I enthusiastically support the vaccination against COVID for children aged 5-11 years old. As an infectious disease doctor who took care of hundreds of COVID-19 patients over the past 20 months, I have seen the immediate and long-term consequences of COVID-19 on patients – and on their families. As a father of two daughters, I have lived through the fear and anxiety of protecting my kids at all cost from the scourges of the pandemic and worried constantly about bringing the virus home from work.

It is imperative that we vaccinate as many children in the community as possible. There are several reasons why. First children do get sick from COVID-19. Over the course of the pandemic in the U.S, more than 2 million children aged 5-11 have become infected, more than 8000 have been hospitalized, and more than 100 have died, making COVID one of the top 10 causes of pediatric deaths in this age group over the past year. Children are also susceptible to chronic consequences of COVID such as long COVID and multisystem inflammatory syndrome in children (MIS-C). Most studies demonstrate that 10-30% of children will develop chronic symptoms following COVID-19. These include complaints of brain fog, fatigue, trouble breathing, fever, headache, muscle and joint pains, abdominal pain, mood swings and even psychiatric disorders. Symptoms typically last from 4-8 weeks in children, with some reporting symptoms that persist for many months.

Keep Reading Keep Reading
Peter Chin-Hong
Dr. Peter Chin-Hong is Associate Dean for Regional Campuses and professor of medicine at UCSF School of Medicine. He is a medical educator who specializes in treating infectious diseases, particularly infections that develop in patients who have suppressed immune systems, such as solid organ and hematopoietic stem cell transplant recipients and HIV+ organ transplant recipients. He directs the immunocompromised host infectious diseases program at UCSF. His research focuses on donor derived infections in transplant recipients and molecular diagnostics of infectious diseases in patients with suppressed immune systems. He earned his undergraduate and medical degrees from Brown University, before completing an internal medicine residency and infectious diseases fellowship at UCSF, where he is Professor of Medicine and Director of the Yearlong Inquiry Program in the School of Medicine. He was the inaugural holder of the Academy of Medical Educators Endowed Chair for Innovation in Teaching.
Nobel Prize goes to technology for mRNA vaccines

Katalin Karikó, pictured, and Drew Weissman won the Nobel Prize for advances in mRNA research that led to the first Covid vaccines.

Adobe Stock

When Drew Weissman received a call from Katalin Karikó in the early morning hours this past Monday, he assumed his longtime research partner was calling to share a nascent, nagging idea. Weissman, a professor of medicine at the Perelman School of Medicine at the University of Pennsylvania, and Karikó, a professor at Szeged University and an adjunct professor at UPenn, both struggle with sleep disturbances. Thus, middle-of-the-night discourses between the two, often over email, has been a staple of their friendship. But this time, Karikó had something more pressing and exciting to share: They had won the 2023 Nobel Prize in Physiology or Medicine.

Keep Reading Keep Reading
Ross Pomeroy
Steven Ross Pomeroy is the editor of RealClearScience. As a writer, Ross believes that his greatest assets are his insatiable curiosity and his ceaseless love for learning. Follow him on Twitter
Scientists turn pee into power in Uganda

With conventional fuel cells as their model, researchers learned to use similar chemical reactions to make a fuel from microbes in pee.

Adobe Stock

At the edge of a dirt road flanked by trees and green mountains outside the town of Kisoro, Uganda, sits the concrete building that houses Sesame Girls School, where girls aged 11 to 19 can live, learn and, at least for a while, safely use a toilet. In many developing regions, toileting at night is especially dangerous for children. Without electrical power for lighting, kids may fall into the deep pits of the latrines through broken or unsteady floorboards. Girls are sometimes assaulted by men who hide in the dark.

For the Sesame School girls, though, bright LED lights, connected to tiny gadgets, chased the fears away. They got to use new, clean toilets lit by the power of their own pee. Some girls even used the light provided by the latrines to study.

Urine, whether animal or human, is more than waste. It’s a cheap and abundant resource. Each day across the globe, 8.1 billion humans make 4 billion gallons of pee. Cows, pigs, deer, elephants and other animals add more. By spending money to get rid of it, we waste a renewable resource that can serve more than one purpose. Microorganisms that feed on nutrients in urine can be used in a microbial fuel cell that generates electricity – or "pee power," as the Sesame girls called it.

Keep Reading Keep Reading
Jenny Morber
Jenny Morber was trained as a scientist and engineer at Georgia Tech, then lost all chance at a Nobel Prize by pivoting to journalism. She writes from the mossy Pacific Northwest about science, people and the world. She misses seeing atoms but is grateful that her days are filled with fresh air, new ideas and interesting people.