Your Questions Answered About Kids, Teens, and Covid Vaccines
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
This virtual event convened leading scientific and medical experts to address the public's questions and concerns about Covid-19 vaccines in kids and teens. Highlight video below.
DATE:
Thursday, May 13th, 2021
12:30 p.m. - 1:45 p.m. EDT
Dr. H. Dele Davies, M.D., MHCM
Senior Vice Chancellor for Academic Affairs and Dean for Graduate Studies at the University of Nebraska Medical (UNMC). He is an internationally recognized expert in pediatric infectious diseases and a leader in community health.
Dr. Emily Oster, Ph.D.
Professor of Economics at Brown University. She is a best-selling author and parenting guru who has pioneered a method of assessing school safety.
Dr. Tina Q. Tan, M.D.
Professor of Pediatrics at the Feinberg School of Medicine, Northwestern University. She has been involved in several vaccine survey studies that examine the awareness, acceptance, barriers and utilization of recommended preventative vaccines.
Dr. Inci Yildirim, M.D., Ph.D., M.Sc.
Associate Professor of Pediatrics (Infectious Disease); Medical Director, Transplant Infectious Diseases at Yale School of Medicine; Associate Professor of Global Health, Yale Institute for Global Health. She is an investigator for the multi-institutional COVID-19 Prevention Network's (CoVPN) Moderna mRNA-1273 clinical trial for children 6 months to 12 years of age.
About the Event Series
This event is the second of a four-part series co-hosted by Leaps.org, the Aspen Institute Science & Society Program, and the Sabin–Aspen Vaccine Science & Policy Group, with generous support from the Gordon and Betty Moore Foundation and the Howard Hughes Medical Institute.
:
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
This Revolutionary Medical Breakthrough Is Not a Treatment or a Cure
What is a disease? This seemingly abstract and theoretical question is actually among the most practical questions in all of biomedicine. How patients are diagnosed, treated, managed and excused from various social and moral obligations hinges on the answer that is given. So do issues of how research is done and health care paid for. The question is also becoming one of the most problematic issues that those in health care will face in the next decade.
"The revolution in our understanding of the human genome, molecular biology, and genetics is creating a huge--if little acknowledged--shift in the understanding of what a disease is."
That is because the current conception of disease is undergoing a revolutionary change, fueled by progress in genetics and molecular biology. The consequences of this shift in the definition of disease promise to be as impactful as any other advance in biomedicine has ever been, which is admittedly saying a lot for what is in essence a conceptual change rather than one based on an empirical scientific advance.
For a long time, disease was defined by patient reports of feeling sick. It was not until the twentieth century that a shift occurred away from subjective reports of clusters of symptoms to defining diseases in terms of physiological states. Doctors began to realize that not all symptoms of fever represented the presence of the same disease. Flu got distinguished from malaria. Diseases such as hypertension, osteoporosis, cancer, lipidemia, silent myocardial infarction, retinopathy, blood clots and many others were recognized as not producing any or slight symptoms until suddenly the patient had a stroke or died.
The ability to assess both biology and biochemistry and to predict the consequences of subclinical pathological processes caused a distinction to be made between illness—what a person experiences—and disease—an underlying pathological process with a predictable course. Some conditions, such as Gulf War Syndrome, PTSD, many mental illnesses and fibromyalgia, remain controversial because no underlying pathological process has been found that correlates with them—a landmark criterion for diagnosing disease throughout most of the last century.
"Diseases for which no relationship had ever been posited are being lumped together due to common biochemical causal pathways...that are amenable to the same curative intervention."
The revolution in our understanding of the human genome, molecular biology, and genetics is creating a huge--if little acknowledged--shift in the understanding of what a disease is. A better understanding of the genetic and molecular roots of pathophysiology is leading to the reclassification of many familiar diseases. The test of disease is now not the pathophysiology but the presence of a gene, set of genes or molecular pathway that causes pathophysiology. Just as fever was differentiated into a multitude of diseases in the last century, cancer, cognitive impairment, addiction and many other diseases are being broken or split into many subkinds. And other diseases for which no relationship had ever been posited are being lumped together due to common biochemical causal pathways or the presence of similar dangerous biochemical products that are amenable to the same curative intervention, no matter how disparate the patients' symptoms or organic pathologies might appear.
We used to differentiate ovarian and breast cancers. Now we are thinking of them as outcomes of the same mutations in certain genes in the BRCA regions. They may eventually lump together as BRCA disease.
Other diseases such as familial amyloid polyneuropathy (FAP) which causes polyneuropathy and autonomic dysfunction are being split apart into new types or kinds. The disease is the product of mutations in the transthyretin gene. It was thought to be an autosomal dominant disease with symptomatic onset between 20-40 years of age. However, as genetic testing has improved, it has become clear that FAP's traditional clinical presentation represents a relatively small portion of those with FAP. Many patients with mutations in transthyretin — even mutations commonly seen in traditional FAP patients — do not fit the common clinical presentation. As the mutations begin to be understood, some people that were previously thought to have other polyneuropathies, such as chronic inflammatory demyelinating neuropathy, are now being rediagnosed with newly discovered variants of FAP.
"We are at the start of a major conceptual shift in how we organize the world of disease, and for that matter, health promotion."
Genome-wide association studies are beginning to find many links between diseases not thought to have any connection or association. For example some forms of diabetes, rheumatoid arthritis and thyroid disease may be the products of a small family of genetic mutations.
So why is this shift toward a genetic and molecular diagnostics likely to shake up medicine? One obvious way is that research projects may propose to recruit subjects not according to current standards of disease but on the basis of common genetic mutations or similar errors in biochemical pathways. It won't matter in a future study if subjects in a trial have what today might be termed nicotine addiction or Parkinsonism. If the molecular pathways producing the pathology are the same, then both groups might well wind up in the same trial of a drug.
In addition, what today look like common maladies—pancreatic cancer, severe depression, or acne, for example, could wind up being subdivided into so many highly differentiated versions of these conditions that each must be treated as what we now classify as a rare or ultra-rare disease. Unique biochemical markers or genetic messages may see many diseases broken into a huge number of distinct individual disease entities.
Patients may find that common genetic pathways or multiple effects from a single gene may create new alliances for fund-raising and advocacy. Groups fighting to cure mental and physical illnesses may wind up forgetting about their outward differences in the effort to alter genes or attack common protein markers.
Disease classification appears stable to us—until it isn't. And we are at the start of a major conceptual shift in how we organize the world of disease, and for that matter, health promotion. Classic reductionism, the view that all observable biological phenomena can be explained in terms of underlying chemical and physical principles, may turn out not to be true. But the molecular and genetic revolutions churning through medicine are illustrating that reductionism is going to have an enormous influence on disease classification. That is not a bad thing, but it is something that is going to take a lot to get used to.
Michio Kaku Talks Life on Mars, Genetic Engineering, and Immortality
Today is the release of THE FUTURE OF HUMANITY, the latest book by the world-renowned physicist Dr. Michio Kaku. In it, he explores the astonishing technologies that could propel us to live on other planets and even to live forever. LeapsMag Editor-in-Chief Kira Peikoff recently chatted with Dr. Kaku about some of the ethical implications we need to consider as we hurtle toward our destiny among the stars. Our interview has been edited and condensed for clarity.
"Technology is like a double-edged sword. The question is, who wields it?"
A big part of your book discusses living on Mars, and you mention that nanotech, biotech and AI could help us do so in the next 100 years. But you also note that efforts to make the Red Planet habitable could backfire, such as using genetic engineering to produce an ideal fertilizer, which could make one life form push out all the others. How should we judge when a powerful new technology is ready to be tested?
Technology is like a double-edged sword. One side can cut against ignorance, poverty, disease. But the other side can cut against people. The question is, who wields the sword? It has to be wielded by people's interests. We have to look not at the needs of the military or corporations, but society as a whole, and we have to realize that every technology, not just the ones I mentioned in the book, has a dark side as well as a positive side.
On the positive side, you could terraform Mars using genetic engineering to create algae, plants that could thrive in the Martian atmosphere, and a self-sustaining agriculture where we could raise food crops. However, it has to be done carefully, because we don't want to have it overrun Mars, just like we have certain plants that overrun the natural environment here on Earth. So we have to do it slowly. It cannot be done all of a sudden in a crash program. We have to see what happens if we begin to terraform stretches of Martian landscape.
Elon Musk of SpaceX, who has pioneered much of these technologies, has stated that we can jumpstart terraforming Mars by detonating hydrogen bombs over the polar ice caps. Later he had to qualify that by saying that they are airbursts, not ground bursts, to minimize radiation. Other people have said, we don't know what a nuclear weapon would do. Would it destabilize Mars? Would it open cracks in the ice caps? So we have to think things through, not just make proposals. Another proposal is to use silver mirrors in space to reflect sunlight down to melt the ice caps, and that would be more environmentally friendly than using hydrogen bombs.
"Our grandkids, when they hit the age of 30, they may just decide to stop aging, and live at age 30 for many decades to come."
As far as colonizing Mars, you also talk about technologies that could potentially help us end aging, but you note that this could exacerbate overpopulation and an exodus from Earth -- the double-edged sword again. What's your personal view on whether anti-aging research should be pursued?
Anti-aging research is accelerating because of the human genome. We're now able to map the genomes of old people, compare them with the genomes of young people, and we can see where aging takes place. For example, in a car, aging takes place in the engine, because that's where we have moving parts and combustion. Where do we find that in a cell? The mitochondria, and so we do see a concentration of error build-up in the mitochondria, and we can envision one day repairing the mistakes, which could in turn increase our life span. Also we're discovering new enzymes like telomerase which allow us to stop the clock. So it's conceivable, I think not for my generation, but for the coming generations, perhaps our grandkids, when they hit the age of 30, they may just decide to stop aging, and live at age 30 for many decades to come.
The other byproduct of this of course is overpopulation. That's a social problem, but realize in places like Japan, we have the opposite problem, under-population, because the birth rate has fallen way below the replacement level, people live too long, and there's very little immigration there. Europe is next. So we have this bizarre situation where some places like Sub-Saharan Africa are still expanding, but other places we're going to see a contraction. Overall, the population will continue to rise, but it's going to slow down. Instead of this exponential curve that many people see in the media, it's going to be shaped like an "S" that rises rapidly and then seals off. The UN is now beginning to entertain the possibility that the population of the Earth may seal off sometime by the end of the century--that we'll hit a steady state.
"In the future, that composite image may be holographic, with all your videotapes, your memories, to create a near approximation of who you are, and centuries from now, you may have digital immortality."
Later in the book, you talk about achieving immortality through storing your digital consciousness, uploading your brain to a computer. Many people today find that notion bizarre or even repulsive, but you also wisely note that "what seems unethical or even immoral today might be ordinary or mundane in the future." What do you think is the key to bridging the gap between controversial breakthroughs and public acceptance?
I imagine that if someone from the Middle Ages, who is fresh from burning witches and heretics and torturing non-believers, were to wind up today in our society, they might go crazy. They might think all of society is a product of the Devil, because attitudes toward morality change. So we humans today cannot dictate what morality will be like 100 years from now. For example, test tube babies. When Louise Brown (the first test tube baby) was first born, the Catholic Church denounced it. Now, today, your wife, husband, you may be a test tube baby and we don't even blink.
There's a Silicon Valley company today that will take what is known about you on the Internet, your credit card transactions, your emails, and create a composite image of you. In the future, that composite image may be holographic, with all your videotapes, your memories, to create a near approximation of who you are, and centuries from now, you may have digital immortality—your memories, your sensations, will be recorded accurately, and an avatar will recreate it. Like for example, I wouldn't mind talking to Einstein. I wouldn't mind sitting down with the guy and having a great conversation about the universe.
And the Connectome Project, by the end of the century, will map the entire brain--that's every neuron--just like the genome project has mapped every gene. And we live with it, we don't even think twice about the fact that our genome exists. In the future, our connectome will also exist. And the connectome can reproduce your thoughts, your dreams, your sensations. We'll just live with that fact; it will be considered ordinary.
"A hundred years from now, we may want to merge with some of these technologies, rather than have to compete with robots."
Wow. In such a "post-human" era, our bodies could be replaced by robots or maintained by genetic engineering. Once these technologies become commercially available, do you think people should have the freedom to make changes or enhancements to themselves?
I think there should be laws passed at a certain point to prevent parents from going crazy trying to genetically engineer their child. Once we isolate the genes for studying, for good behavior, things like that, we may be tempted to tinker with it. I think a certain amount of tinkering is fine, but we don't want to let it get out of control. There has to be limits.
Also, we are in competition with robots of the future. A hundred years from now, robots are going to become very intelligent. Some people think they're going to take over. My attitude is that a hundred years from now, we may want to merge with some of these technologies, rather than have to compete with robots. But we're not going to look like some freaky robot because we're genetically hardwired to look good to the opposite sex, to look good to our peers. Hundreds of thousands of years ago, and hundreds of thousands of years into the future, we'll still look the same. We'll genetically modify ourselves a little bit, but we'll basically look the same.
That's an interesting point. It's amazing how fast technology is moving overall. Like at one point in the book, you mention that primates had never been cloned, but a few weeks ago, news broke that this just happened in China. Do you think we should slow down the dramatic pace of acceleration and focus on the ethical considerations, or should we still move full-steam ahead?
Well, CRISPR technology has accelerated us more than we previously thought. In the past, to tinker with genes, you had to cut and splice, and it was a lot of guesswork and trial and error. Now, you can zero in on the cutting process and streamline it, so cutting and splicing genes becomes much more accurate, and you can edit them just like you edit a book. Within the field of bioengineering, they have set up their own conferences to begin to police themselves into figuring out which domains are ethically dangerous and which areas can provide benefits for humanity, because they realize that this technology can go a little bit too fast.
"Where does truth come from? Truth comes from interaction with incorrect ideas."
You cannot recall a life form. Once a life form is created, it reproduces. That's what life does. If it reproduces outside the laboratory, it could take over. So we want to make sure that we don't have to recall a life form, like you would recall a Ford or a Chevrolet. Eventually governments may have to slow down the pace because it's moving very rapidly.
Lastly, you talk about the importance of democratic debate to resolve how controversial technology should be used. How can science-minded people bring the rest of society into these conversations, so that as much of society as possible is represented?
It's a question of where does truth come from? Truth comes from interaction with incorrect ideas--the collision of truth and untruth, rumors and fact. It doesn't come from a machine where you put in a quarter, and out comes the answer. It requires democratic debate. And that's where the Internet comes in, that's where the media comes in, that's where this interview comes in. You want to stimulate and educate the people so they know the dangers and promises of technology, and then engage with them about the moral implications, because these things are going to affect every aspect of our life in the future.
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.