Dadbot, Wifebot, Friendbot: The Future of Memorializing Avatars
In 2016, when my family found out that my father was dying from cancer, I did something that at the time felt completely obvious: I started building a chatbot replica of him.
I simply wanted to create an interactive way to share key parts of his life story.
I was not under any delusion that the Dadbot, as I soon began calling it, would be a true avatar of him. From my research about the voice computing revolution—Siri, Alexa, the Google Assistant—I knew that fully humanlike AIs, like you see in the movies, were a vast ways from technological reality. Replicating my dad in any real sense was never the goal, anyway; that notion gave me the creeps.
Instead, I simply wanted to create an interactive way to share key parts of his life story: facts about his ancestors in Greece. Memories from growing up. Stories about his hobbies, family life, and career. And I wanted the Dadbot, which sent text messages and audio clips over Facebook Messenger, to remind me of his personality—warm, erudite, and funny. So I programmed it to use his distinctive phrasings; to tell a few of his signature jokes and sing his favorite songs.
While creating the Dadbot, a laborious undertaking that sprawled into 2017, I fixated on two things. The first was getting the programming right, which I did using a conversational agent authoring platform called PullString. The second, far more wrenching concern was my father's health. Failing to improve after chemotherapy and immunotherapy, and steadily losing energy, weight, and the animating sparkle of life, he died on February 9.
John Vlahos at a family reunion in the summer of 2016, a few months after his cancer diagnosis.
(Courtesy James Vlahos)
After a magazine article that I wrote about the Dadbot came out in the summer of 2017, messages poured in from readers. While most people simply expressed sympathy, some conveyed a more urgent message: They wanted their own memorializing chatbots. One man implored me to make a bot for him; he had been diagnosed with cancer and wanted his six-month-old daughter to have a way to remember him. A technology entrepreneur needed advice on replicating what I did for her father, who had stage IV cancer. And a teacher in India asked me to engineer a conversational replica of her son, who had recently been struck and killed by a bus.
Journalists from around the world also got in touch for interviews, and they inevitably came around to the same question. Will virtual immortality, they asked, ever become a business?
The prospect of this happening had never crossed my mind. I was consumed by my father's struggle and my own grief. But the notion has since become head-slappingly obvious. I am not the only person to confront the loss of a loved one; the experience is universal. And I am not alone in craving a way to keep memories alive. Of course people like the ones who wrote me will get Dadbots, Mombots, and Childbots of their own. If a moonlighting writer like me can create a minimum viable product, then a company employing actual computer scientists could do much more.
But this prospect raises unanswered and unsettling questions. For businesses, profit, and not some deeply personal mission, will be the motivation. This shift will raise issues that I didn't have to confront. To make money, a virtual immortality company could follow the lucrative but controversial business model that has worked so well for Google and Facebook. To wit, a company could provide the memorializing chatbot for free and then find ways to monetize the attention and data of whoever communicated with it. Given the copious amount of personal information flowing back and forth in conversations with replica bots, this would be a data gold mine for the company—and a massive privacy risk for users.
Virtual immortality as commercial product will doubtless become more sophisticated.
Alternately, a company could charge for memorializing avatars, perhaps with an annual subscription fee. This would put the business in a powerful position. Imagine the fee getting hiked each year. A customer like me would find himself facing a terrible decision—grit my teeth and keep paying, or be forced to pull the plug on the best, closest reminder of a loved one that I have. The same person would effectively wind up dying twice.
Another way that a beloved digital avatar could die is if the company that creates it ceases to exist. This is no mere academic concern for me: Earlier this year, PullString was swallowed up by Apple. I'm still able to access the Dadbot on my own computer, fortunately, but the acquisition means that other friends and family members can no longer chat with him remotely.
Startups like PullString, of course, are characterized by impermanence; they tend to get snapped up by bigger companies or run out of venture capital and fold. But even if big players like, say, Facebook or Google get into the virtual immortality game, we can't count on them existing even a few decades from now, which means that the avatars enabled by their technology would die, too.
The permanence problem is the biggest hurdle faced by the fledgling enterprise of virtual immortality. So some entrepreneurs are attempting to enable avatars whose existence isn't reliant upon any one company or set of computer servers. "By leveraging the power of blockchain and decentralized software to replicate information, we help users create avatars that live on forever," says Alex Roy, the founder and CEO of the startup Everlife.ai. But until this type of solution exists, give props to conventional technology for preserving memories: printed photos and words on paper can last for centuries.
The fidelity of avatars—just how lifelike they are—also raises serious concerns. Before I started creating the Dadbot, I worried that the tech might be just good enough to remind my family of the man it emulated, but so far off from my real father that it gave us all the creeps. But because the Dadbot was a simple chatbot and not some all-knowing AI, and because the interface was a messaging app, there was no danger of him encroaching on the reality of my actual dad.
But virtual immortality as commercial product will doubtless become more sophisticated. Avatars will have brains built by teams of computer scientists employing the latest techniques in conversational AI. The replicas will not just text but also speak, using synthetic voices that emulate the ones of the people being memorialized. They may even come to life as animated clones on computer screens or in 3D with the help of virtual reality headsets.
What fascinates me is how technology can help to preserve the past—genuine facts and memories from peoples' lives.
These are all lines that I don't personally want to cross; replicating my dad was never the goal. I also never aspired to have some synthetic version of him that continued to exist in the present, capable of acquiring knowledge about the world or my life and of reacting to it in real time.
Instead, what fascinates me is how technology can help to preserve the past—genuine facts and memories from people's lives—and their actual voices so that their stories can be shared interactively after they have gone. I'm working on ideas for doing this via voice computing platforms like Alexa and Assistant, and while I don't have all of the answers yet, I'm excited to figure out what might be possible.
[Adapted from Talk to Me: How Voice Computing Will Transform the Way We Live, Work, and Think (Houghton Mifflin Harcourt, March 26, 2019).]
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. David Spiegel, associate chair of psychiatry and behavioral sciences at Stanford, and Dr. Filip Swirski, professor of medicine and cardiology at the Icahn School of Medicine at Mount Sinai.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. David Spiegel, associate chair of psychiatry and behavioral sciences at Stanford, and Dr. Filip Swirski, professor of medicine and cardiology at the Icahn School of Medicine at Mount Sinai.
- Breathing this way cuts down on anxiety*
- Could your fasting regimen make you sick?
- This type of job makes men more virile
- 3D printed hearts could save your life
- Yet another potential benefit of metformin
* This video with Dr. Andrew Huberman of Stanford shows exactly how to do the breathing practice.
This podcast originally aired on March 3, 2023.
Breakthrough drones deliver breast milk in rural Uruguay
Until three months ago, nurse Leopoldina Castelli used to send bottles of breast milk to nourish babies in the remote areas of Tacuarembó, in northern Uruguay, by way of ambulances or military trucks. That is, if the vehicles were available and the roads were passable, which wasn’t always the case. Now, five days per week, she stands by a runway at the hospital, located in Tacuarembó’s capital, watching a drone take off and disappear from view, carrying the milk to clinics that serve the babies’ families.
The drones can fly as far as 62 miles. Long distances and rough roads are no obstacles. The babies, whose mothers struggle to produce sufficient milk and cannot afford formula, now receive ample supplies for healthy growth. “Today we provided nourishment to a significantly larger number of children, and this is something that deeply moves me,” Castelli says.
About two decades ago, the Tacuarembó hospital established its own milk bank, supported by donations from mothers across Tacuarembó. Over the years, the bank has provided milk to infants immediately after birth. It's helped drive a “significant and sustained” decrease in infant mortality, says the hospital director, Ciro Ferreira.
But these children need breast milk throughout their first six months, if not longer, to prevent malnutrition and other illnesses that are prevalent in rural Tacuarembó. Ground transport isn't quick or reliable enough to meet this goal. It can take several hours, during which the milk may spoil due to a lack of refrigeration.
The battery-powered drones have been the difference-maker. The project to develop them, financed by the UNICEF Innovation Fund, is the first of its kind in Latin America. To Castelli, it's nothing short of a revolution. Tacuarembó Hospital, along with three rural clinics in the most impoverished part of Uruguay, are its leaders.
"This marks the first occasion when the public health system has been directly impacted [by our technology]," says Sebastián Macías, the CEO and co-founder of Cielum, an engineer at the University Republic, which collaborated on the technology with a Uruguayan company called Cielum and a Swiss company, Rigitech.
The drone can achieve a top speed of up to 68 miles per hour, is capable of flying in light rain, and can withstand winds of up to 30 miles per hour at a maximum altitude of 120 meters.
"We have succeeded in embracing the mothers from rural areas who were previously slipping through the cracks of the system," says Ferreira, the hospital director. He envisions an expansion of the service so it can improve health for children in other rural areas.
Nurses load the drone for breast milk delivery.
Sebastián Macías - Cielum
The star aircraft
The drone, which costs approximately $70,000, was specifically designed for the transportation of biological materials. Constructed from carbon fiber, it's three meters wide, two meters long and weighs 42 pounds when fully loaded. Additionally, it is equipped with a ballistic parachute to ensure a safe descent in case the technology fails in midair. Furthermore, it can achieve a top speed of 68 miles per hour, fly in light rain, and withstand winds of 30 miles per hour at a height of 120 meters.
Inside, the drones feature three refrigerated compartments that maintain a stable temperature and adhere to the United Nations’ standards for transporting perishable products. These compartments accommodate four gallons or 6.5 pounds of cargo. According to Macías, that's more than sufficient to carry a week’s worth of milk for one infant on just two flights, or 3.3 pounds of blood samples collected in a rural clinic.
“From an energy perspective, it serves as an efficient mode of transportation and helps reduce the carbon emissions associated with using an ambulance,” said Macías. Plus, the ambulance can remain available in the town.
Macías, who has led software development for the drone, and three other technicians have been trained to operate it. They ensure that the drone stays on course, monitor weather conditions and implement emergency changes when needed. The software displays the in-flight positions of the drones in relation to other aircraft. All agricultural planes in the region receive notification about the drone's flight path, departure and arrival times, and current location.
The future: doubling the drone's reach
Forty-five days after its inaugural flight, the drone is now making five flights per week. It serves two routes: 34 miles to Curtina and 31 miles to Tambores. The drone reaches Curtina in 50 minutes while ambulances take double that time, partly due to the subpar road conditions. Pueblo Ansina, located 40 miles from the state capital, will soon be introduced as the third destination.
Overall, the drone’s schedule is expected to become much busier, with plans to accomplish 20 weekly flights by the end of October and over 30 in 2024. Given the drone’s speed, Macías is contemplating using it to transport cancer medications as well.
“When it comes to using drones to save lives, for us, the sky is not the limit," says Ciro Ferreira, Tacuarembó hospital director.
In future trips to clinics in San Gregorio de Polanco and Caraguatá, the drone will be pushed to the limit. At these locations, a battery change will be necessary, but it's worth it. The route will cover up to 10 rural Tacuarembó clinics plus one hospital outside Tacuarembó, in Rivera, close to the border with Brazil. Currently, because of a shortage of ambulances, the delivery of pasteurized breast milk to Rivera only occurs every 15 days.
“The expansion to Rivera will include 100,000 more inhabitants, doubling the healthcare reach,” said Ferreira, the director of the Tacuarembó Hospital. In itself, Ferreira's hospital serves the medical needs of 500,000 people as one of the largest in Uruguay's interior.
Alejandro Del Estal, an aeronautical engineer at Rigitech, traveled from Europe to Tacuarembó to oversee the construction of the vertiports – the defined areas that can support drones’ take-off and landing – and the first flights. He pointed out that once the flight network between hospitals and rural polyclinics is complete in Uruguay, it will rank among the five most extensive drone routes in the world for any activity, including healthcare and commercial uses.
Cielum is already working on the long-term sustainability of the project. The aim is to have more drones operating in other rural regions in the western and northern parts of the country. The company has received inquiries from Argentina and Colombia, but, as Macías pointed out, they are exercising caution when making commitments. Expansion will depend on the development of each country’s regulations for airspace use.
For Ferreira, the advantages in Uruguay are evident: "This approach enables us to bridge the geographical gap, enhance healthcare accessibility, and reduce the time required for diagnosing and treating rural inhabitants, all without the necessity of them traveling to the hospital,” he says. "When it comes to using drones to save lives, for us, the sky is not the limit."