A Tool for Disease Detection Is Right Under Our Noses
The doctor will sniff you now? Well, not on his or her own, but with a device that functions like a superhuman nose. You’ll exhale into a breathalyzer, or a sensor will collect “scent data” from a quick pass over your urine or blood sample. Then, AI software combs through an olfactory database to find patterns in the volatile organic compounds (VOCs) you secreted that match those associated with thousands of VOC disease biomarkers that have been identified and cataloged.
No further biopsy, imaging test or procedures necessary for the diagnosis. According to some scientists, this is how diseases will be detected in the coming years.
All diseases alter the organic compounds found in the body and their odors. Volatolomics is an emerging branch of chemistry that uses the smell of gases emitted by breath, urine, blood, stool, tears or sweat to diagnose disease. When someone is sick, the normal biochemical process is disrupted, and this alters the makeup of the gas, including a change in odor.
“These metabolites show a snapshot of what’s going on with the body,” says Cristina Davis, a biomedical engineer and associate vice chancellor of Interdisciplinary Research and Strategic Initiatives at the University of California, Davis. This opens the door to diagnosing conditions even before symptoms are present. It’s possible to detect a sweet, fruity smell in the breath of someone with diabetes, for example.
Hippocrates may have been the first to note that people with certain diseases give off an odor but dogs provided the proof of concept. Scientists have published countless studies in which dogs or other high-performing smellers like rodents have identified people with cancer, lung disease or other conditions by smell alone. The brain region that analyzes smells is proportionally about 40 times greater in dogs than in people. The noses of rodents are even more powerful.
Take prostate cancer, which is notoriously difficult to detect accurately with standard medical testing. After sniffing a tiny urine sample, trained dogs were able to pick out prostate cancer in study subjects more than 96 percent of the time, and earlier than a physician could in some cases.
But using dogs as bio-detectors is not practical. It is labor-intensive, complicated and expensive to train dogs to bark or lie down when they smell a certain VOC, explains Bruce Kimball, a chemical ecologist at the Monell Chemical Senses Center in Philadelphia. Kimball has trained ferrets to scratch a box when they smell a specific VOC so he knows. The lab animal must be taught to distinguish the VOC from background odors and trained anew for each disease scent.
In the lab of chemical ecologist Bruce Kimball, ferrets were trained to scratch a box when they identified avian flu in mallard ducks.
Glen J. Golden
There are some human super-smellers among us. In 2019, Joy Milne of Scotland proved she could unerringly identify people with Parkinson’s disease from a musky scent emitted from their skin. Clinical testing showed that she could distinguish the odor of Parkinson’s on a worn t-shirt before clinical symptoms even appeared.
Hossam Haick, a professor at Technion-Israel Institute of Technology, maintains that volatolomics is the future of medicine. Misdiagnosis and late detection are huge problems in health care, he says. “A precise and early diagnosis is the starting point of all clinical activities.” Further, this science has the potential to eliminate costly invasive testing or imaging studies and improve outcomes through earlier treatment.
The Nose Knows a Lot
“Volatolomics is not a fringe theory. There is science behind it,” Davis stresses. Every VOC has its own fingerprint, and a method called gas chromatography-mass spectrometry (GCMS) uses highly sensitive instruments to separate the molecules of these VOCs to determine their structures. But GCMS can’t discern the telltale patterns of particular diseases, and other technologies to analyze biomarkers have been limited.
We have technology that can see, hear and sense touch but scientists don’t have a handle yet on how smell works. The ability goes beyond picking out a single scent in someone’s breath or blood sample. It’s the totality of the smell—not the smell of a single chemical— which defines a disease. The dog’s brain is able to infer something when they smell a VOC that eludes human analysis so far.
Odor is a complex ecosystem and analyzing a VOC is compounded by other scents in the environment, says Kimball. A person’s diet and use of tobacco or alcohol also will affect the breath. Even fluctuations in humidity and temperature can contaminate a sample.
If successful, a sophisticated AI network can imitate how the dog brain recognizes patterns in smells. Early versions of robot noses have already been developed.
With today’s advances in data mining, AI and machine learning, scientists are trying to create mechanical devices that can draw on algorithms based on GCMS readings and data about diseases that dogs have sniffed out. If successful, a sophisticated AI network can imitate how the dog brain recognizes patterns in smells.
In March, Nano Research published a comprehensive review of volatolomics in health care authored by Haick and seven colleagues. The intent was to bridge gaps in the field for scientists trying to connect the biomarkers and sensor technology needed to develop a robot nose. This paper serves as a reference manual for the field that lists which VOCs are associated with what disease and the biomarkers in skin, saliva, breath, and urine.
Weiwei Wu, one of the co-authors and a professor at Xidian University in China, explains that creating a robotic nose requires the expertise of chemists, computer scientists, electrical engineers, material scientists, and clinicians. These researchers use different terms and methodologies and most have not collaborated before with the other disciplines. “The electrical engineers know the device but they don’t know as much about the biomarkers they need to detect,” Wu offers as an example.
This review is significant, Wu continues, because it can facilitate progress in the field by providing experts in all the disciplines with the basic knowledge needed to create an effective robot nose for diagnostic use. The paper also includes a systematic summary of the research methodology of volatolomics.
Once scientists build a stronger database of VOCs, they can program a device to identify critical patterns of specified diseases on a reliable basis. On a machine learning model, the algorithms automatically get better at diagnosing with each use. Wu envisions further tweaks in the next few years to make the devices smaller and consume less power.
A Whiff of the Future
Early versions of robot noses have already been developed. Some of them use chemical sensors to pick up smells in the breath or other body emission molecules. That data is sent through an electrical signal to a computer network for interpretation and possible linkage to a disease.
This electronic nose, or e-nose, has been successful in small pilot studies at labs around the world. At Ben-Gurion University in Israel, researchers detected breast cancer with electronic gas sensors with 95% accuracy, a higher sensitivity than mammograms. Other robot noses, called p-noses, use photons instead of electrical signals.
The mechanical noses being developed tap different methodologies and analytic techniques which makes it hard to compare them. Plus, the devices are intended for varying uses. One team, for example, is working on an e-nose that can be waved over a plate to screen for the presence of a particular allergen when you’re dining out.
A robot nose could be used as a real-time diagnostic tool in clinical practice. Kimball is working on one such tool that can distinguish between a viral and bacterial infection. This would enable physicians to determine whether an antibiotic prescription is appropriate without waiting for a lab result.
Davis is refining a hand-held device that identifies COVID-19 through a simple breath test. She sees the tool being used at crowded airports, sports stadiums and concert venues where PCR or rapid antigen testing is impractical. Background air samples are collected from the space so that those signals can be removed from the human breath measurement. “[The sensor tool] has the same accuracy as the rapid antigen test kits but exhaled breath is easier to collect,” she notes.
The NaNose, also known as the SniffPhone, uses tiny sensors boosted by AI to distinguish Alzheimer's, Crohn's disease, the early stages of several cancers, and other diseases with 84 to 98 percent accuracy.
Hossam Haick
Haick named his team’s robot nose, “NaNose,” since it is based on nanotechnology; the prototype is called the SniffPhone. Using tiny sensors boosted by AI, it can distinguish 23 diseases in human subjects with 84 to 98 percent accuracy. This includes early stages of several cancers, Alzheimer’s, tuberculosis and Crohn’s disease. His team has been raising the accuracy level by combining biomarker signals from both breath and skin, for example. The goal is to achieve 99.9 percent accuracy consistently so no other diagnostic tests would be needed before treating the patient. Plus, it will be affordable, he says.
Kimball predicts we’ll be seeing these diagnostic tools in the next decade. “The physician would narrow down what [the diagnosis] might be and then get the correct tool,” he says. Others are envisioning one device that can screen for multiple diseases by programming the software, which would be updated regularly with new findings.
Larger volatolomics studies must be conducted before these e-noses are ready for clinical use, however. Experts also need to learn how to establish normal reference ranges for e-nose readings to support clinicians using the tool.
“Taking successful prototypes from the lab to industry is the challenge,” says Haick, ticking off issues like reproducibility, mass production and regulation. But volatolomics researchers are unanimous in believing the future of health care is so close they can smell it.
How sharing, hearing, and remembering positive stories can help shape our brains for the better
Across cultures and through millennia, human beings have always told stories. Whether it’s a group of boy scouts around a campfire sharing ghost stories or the paleolithic Cro-Magnons etching pictures of bison on cave walls, researchers believe that storytelling has been universal to human beings since the development of language.
But storytelling was more than just a way for our ancestors to pass the time. Researchers believe that storytelling served an important evolutionary purpose, helping humans learn empathy, share important information (such as where predators were or what berries were safe to eat), as well as strengthen social bonds. Quite literally, storytelling has made it possible for the human race to survive.
Today, neuroscientists are discovering that storytelling is just as important now as it was millions of years ago. Particularly in sharing positive stories, humans can more easily form relational bonds, develop a more flexible perspective, and actually grow new brain circuitry that helps us survive. Here’s how.
How sharing stories positively impacts the brain
When human beings share stories, it increases the levels of certain neurochemicals in the brain, neuroscientists have found. In a 2021 study published in Proceedings of the National Academy of Sciences (PNAS), Swedish researchers found that simply hearing a story could make hospitalized children feel better, compared to other hospitalized children who played a riddle game for the same amount of time. In their research, children in the intensive care unit who heard stories for just 30 minutes had higher levels of oxytocin, a hormone that promotes positive feelings and is linked to relaxation, trust, social connectedness, and overall psychological stability. Furthermore, the same children showed lower levels of cortisol, a hormone associated with stress. Afterward, the group of children who heard stories tended to describe their hospital experiences more positively, and even reported lower levels of pain.
Annie Brewster, MD, knows the positive effect of storytelling from personal experience. An assistant professor at Harvard Medical School and the author of The Healing Power of Storytelling: Using Personal Narrative to Navigate Illness, Trauma, and Loss, Brewster started sharing her personal experience with chronic illness after being diagnosed with multiple sclerosis in 2001. In doing so, Brewster says it has enabled her to accept her diagnosis and integrate it into her identity. Brewster believes so much in the power of hearing and sharing stories that in 2013 she founded Health Story Collaborative, a forum for others to share their mental and physical health challenges.“I wanted to hear stories of people who had found ways to move forward in positive ways, in spite of health challenges,” Brewster said. In doing so, Brewster believes people with chronic conditions can “move closer to self-acceptance and self-love.”
While hearing and sharing positive stories has been shown to increase oxytocin and other “feel good” chemicals, simply remembering a positive story has an effect on our brains as well. Mark Hoelterhoff, PhD, a lecturer in clinical psychology at the University of Edinburgh, recalling and “savoring” a positive story, thought, or feedback “begins to create new brain circuitry—a new neural network that’s geared toward looking for the positive,” he says. Over time, other research shows, savoring positive stories or thoughts can literally change the shape of your brain, hard-wiring someone to see things in a more positive light.How stories can change your behavior
In 2009, Paul Zak, PhD, a neuroscientist and professor at Claremont Graduate University, set out to measure how storytelling can actually change human behavior for the better. In his study, Zak wanted to measure the behavioral effects of oxytocin, and did this by showing test subjects two short video clips designed to elicit an emotional response.
In the first video they showed the study participants, a father spoke to the camera about his two-year-old son, Ben, who had been diagnosed with terminal brain cancer. The father told the audience that he struggled to connect with and enjoy Ben, as Ben had only a few months left to live. In the end, the father finds the strength to stay emotionally connected to his son until he dies.
The second video clip, however, was much less emotional. In that clip, the same father and son are shown spending the day at the zoo. Ben is only suggested to have cancer (he is bald from chemotherapy and referred to as a ‘miracle’, but the cancer isn’t mentioned directly). The second story lacked the dramatic narrative arc of the first video.
Zak’s team took blood before and after the participants watched one of the two videos and found that the first story increased the viewers’ cortisol and oxytocin, suggesting that they felt distress over the boy’s diagnosis and empathy toward the boy and his father. The second narrative, however, didn’t increase oxytocin or cortisol at all.
But Zak took the experiment a step further. After the movie clips, his team gave the study participants a chance to share money with a stranger in the lab. The participants who had an increase in cortisol and oxytocin were more likely to donate money generously. The participants who had increased cortisol and oxytocin were also more likely to donate money to a charity that works with children who are ill. Zak also found that the amount of oxytocin that was released was correlated with how much money people felt comfortable giving—in other words, the more oxytocin that was released, the more generous they felt, and the more money they donated.
How storytelling strengthens our bond with others
Sharing, hearing, and remembering stories can be a powerful tool for social change–not only in the way it changes our brain and our behavior, but also because it can positively affect our relationships with other people
Emotional stimulation from telling stories, writes Zak, is the foundation for empathy, and empathy strengthens our relationships with other people. “By knowing someone’s story—where they come from, what they do, and who you might know in common—relationships with strangers are formed.”
But why are these relationships important for humanity? Because human beings can use storytelling to build empathy and form relationships, it enables them to “engage in the kinds of large-scale cooperation that builds massive bridges and sends humans into space,” says Zak.
Storytelling, Zak found, and the oxytocin release that follows, also makes people more sensitive to social cues. This sensitivity not only motivates us to form relationships, but also to engage with other people and offer help, particularly if the other person seems to need help.
But as Zak found in his experiments, the type of storytelling matters when it comes to affecting relationships. Where Zak found that storytelling with a dramatic arc helps release oxytocin and cortisol, enabling people to feel more empathic and generous, other researchers have found that sharing happy stories allows for greater closeness between individuals and speakers. A group of Chinese researchers found that, compared to emotionally-neutral stories, happy stories were more “emotionally contagious.” Test subjects who heard happy stories had greater activation in certain areas of their brains, experienced more significant, positive changes in their mood, and felt a greater sense of closeness between themselves and the speaker.
“This finding suggests that when individuals are happy, they become less self-focused and then feel more intimate with others,” the authors of the study wrote. “Therefore, sharing happiness could strengthen interpersonal bonding.” The researchers went on to say that this could lead to developing better social networks, receiving more social support, and leading more successful social lives.
Since the start of the COVID pandemic, social isolation, loneliness, and resulting mental health issues have only gotten worse. In light of this, it’s safe to say that hearing, sharing, and remembering stories isn’t just something we can do for entertainment. Storytelling has always been central to the human experience, and now more than ever it’s become something crucial for our survival.
Want to know how you can reap the benefits of hearing happy stories? Keep an eye out for Upworthy’s first book, GOOD PEOPLE: Stories from the Best of Humanity, published by National Geographic/Disney, available on September 3, 2024. GOOD PEOPLE is a much-needed trove of life-affirming stories told straight from the heart. Handpicked from Upworthy’s community, these 101 stories speak to the breadth, depth, and beauty of the human experience, reminding us we have a lot more in common than we realize.
A new type of cancer therapy is shrinking deadly brain tumors with just one treatment
Few cancers are deadlier than glioblastomas—aggressive and lethal tumors that originate in the brain or spinal cord. Five years after diagnosis, less than five percent of glioblastoma patients are still alive—and more often, glioblastoma patients live just 14 months on average after receiving a diagnosis.
But an ongoing clinical trial at Mass General Cancer Center is giving new hope to glioblastoma patients and their families. The trial, called INCIPIENT, is meant to evaluate the effects of a special type of immune cell, called CAR-T cells, on patients with recurrent glioblastoma.
How CAR-T cell therapy works
CAR-T cell therapy is a type of cancer treatment called immunotherapy, where doctors modify a patient’s own immune system specifically to find and destroy cancer cells. In CAR-T cell therapy, doctors extract the patient’s T-cells, which are immune system cells that help fight off disease—particularly cancer. These T-cells are harvested from the patient and then genetically modified in a lab to produce proteins on their surface called chimeric antigen receptors (thus becoming CAR-T cells), which makes them able to bind to a specific protein on the patient’s cancer cells. Once modified, these CAR-T cells are grown in the lab for several weeks so that they can multiply into an army of millions. When enough cells have been grown, these super-charged T-cells are infused back into the patient where they can then seek out cancer cells, bind to them, and destroy them. CAR-T cell therapies have been approved by the US Food and Drug Administration (FDA) to treat certain types of lymphomas and leukemias, as well as multiple myeloma, but haven’t been approved to treat glioblastomas—yet.
CAR-T cell therapies don’t always work against solid tumors, such as glioblastomas. Because solid tumors contain different kinds of cancer cells, some cells can evade the immune system’s detection even after CAR-T cell therapy, according to a press release from Massachusetts General Hospital. For the INCIPIENT trial, researchers modified the CAR-T cells even further in hopes of making them more effective against solid tumors. These second-generation CAR-T cells (called CARv3-TEAM-E T cells) contain special antibodies that attack EFGR, a protein expressed in the majority of glioblastoma tumors. Unlike other CAR-T cell therapies, these particular CAR-T cells were designed to be directly injected into the patient’s brain.
The INCIPIENT trial results
The INCIPIENT trial involved three patients who were enrolled in the study between March and July 2023. All three patients—a 72-year-old man, a 74-year-old man, and a 57-year-old woman—were treated with chemo and radiation and enrolled in the trial with CAR-T cells after their glioblastoma tumors came back.
The results, which were published earlier this year in the New England Journal of Medicine (NEJM), were called “rapid” and “dramatic” by doctors involved in the trial. After just a single infusion of the CAR-T cells, each patient experienced a significant reduction in their tumor sizes. Just two days after receiving the infusion, the glioblastoma tumor of the 72-year-old man decreased by nearly twenty percent. Just two months later the tumor had shrunk by an astonishing 60 percent, and the change was maintained for more than six months. The most dramatic result was in the 57-year-old female patient, whose tumor shrank nearly completely after just one infusion of the CAR-T cells.
The results of the INCIPIENT trial were unexpected and astonishing—but unfortunately, they were also temporary. For all three patients, the tumors eventually began to grow back regardless of the CAR-T cell infusions. According to the press release from MGH, the medical team is now considering treating each patient with multiple infusions or prefacing each treatment with chemotherapy to prolong the response.
While there is still “more to do,” says co-author of the study neuro-oncologist Dr. Elizabeth Gerstner, the results are still promising. If nothing else, these second-generation CAR-T cell infusions may someday be able to give patients more time than traditional treatments would allow.
“These results are exciting but they are also just the beginning,” says Dr. Marcela Maus, a doctor and professor of medicine at Mass General who was involved in the clinical trial. “They tell us that we are on the right track in pursuing a therapy that has the potential to change the outlook for this intractable disease.”