Scientists Are Studying How to Help Dogs Have Longer Lives, in a Bid to Further Our Own

Scientists Are Studying How to Help Dogs Have Longer Lives, in a Bid to Further Our Own

Feeding dogs only once a day is showing health benefits in a large study, scientists report.

Photo by Eric Ward on Unsplash

The sad eyes. The wagging tail. The frustrated whine. The excited bark. Dogs know how to get their owners to fork over the food more often.

The extra calories dogs get from feeding patterns now used by many Americans may not be good for them from a health and longevity viewpoint. In research from a large study called the Dog Aging Project, canines fed once a day had better scores on cognition tests and lower odds of developing diseases of organs throughout the body: intestinal tract, mouth and teeth, bones and joints, kidneys and bladder, and liver and pancreas.

Fewer than 1 in 10 dog owners fed their furry friends once daily, while nearly three fourths provided two daily meals.

“Most veterinarians have been led to believe that feeding dogs twice a day is optimal, but this is a relatively new idea that has developed over the past few decades with little supportive evidence from a health standpoint,” said Matt Kaeberlein, PhD, Co-Director of the Dog Aging Project, a professor of pathology and Director of the Healthy Aging and Longevity Research Institute at the University of Washington. Kaeberlein studies basic mechanisms of aging to find ways of extending the healthspan, the number of years of life lived free of disease. It’s not enough to extend the lifespan unless declines in biological function and risks of age-related diseases are also studied, he believes, hence the healthspan.

Keep Reading Keep Reading
L. Michael Posey
A pharmacist-editor-journalist since 1980, L. Michael Posey is a regular writer and editor for The Gerontological Society of America, Postgraduate Healthcare Education’s PowerPak.com website, and other clients. The author of several books and many news and journal articles, Posey is a founding editor of a landmark textbook in pharmacy, Pharmacotherapy: A Pathophysiologic Approach, a McGraw Hill title now in its 11th edition. He holds a master's degree in health and medical journalism and baccalaureate degrees in pharmacy and microbiology from the University of Georgia. Posey is the father of four sons and a daughter and resides in the Wine Country north of San Francisco. Follow him on Twitter @lmposey.
Massive benefits of AI come with environmental and human costs. Can AI itself be part of the solution?

Generative AI has a large carbon footprint and other drawbacks. But AI can help mitigate its own harms—by plowing through mountains of data on extreme weather and human displacement.

Adobe Stock

The recent explosion of generative artificial intelligence tools like ChatGPT and Dall-E enabled anyone with internet access to harness AI’s power for enhanced productivity, creativity, and problem-solving. With their ever-improving capabilities and expanding user base, these tools proved useful across disciplines, from the creative to the scientific.

But beneath the technological wonders of human-like conversation and creative expression lies a dirty secret—an alarming environmental and human cost. AI has an immense carbon footprint. Systems like ChatGPT take months to train in high-powered data centers, which demand huge amounts of electricity, much of which is still generated with fossil fuels, as well as water for cooling. “One of the reasons why Open AI needs investments [to the tune of] $10 billion from Microsoft is because they need to pay for all of that computation,” says Kentaro Toyama, a computer scientist at the University of Michigan. There’s also an ecological toll from mining rare minerals required for hardware and infrastructure. This environmental exploitation pollutes land, triggers natural disasters and causes large-scale human displacement. Finally, for data labeling needed to train and correct AI algorithms, the Big Data industry employs cheap and exploitative labor, often from the Global South.

Keep Reading Keep Reading
Payal Dhar
Payal is a writer based in New Delhi who has been covering science, technology, and society since 1998.
DNA gathered from animal poop helps protect wildlife

Alida de Flamingh and her team are collecting elephant dung. It holds a trove of information about animal health, diet and genetic diversity.

Courtesy Alida de Flamingh

On the savannah near the Botswana-Zimbabwe border, elephants grazed contentedly. Nearby, postdoctoral researcher Alida de Flamingh watched and waited. As the herd moved away, she went into action, collecting samples of elephant dung that she and other wildlife conservationists would study in the months to come. She pulled on gloves, took a swab, and ran it all over the still-warm, round blob of elephant poop.

Sequencing DNA from fecal matter is a safe, non-invasive way to track and ultimately help protect over 42,000 species currently threatened by extinction. Scientists are using this DNA to gain insights into wildlife health, genetic diversity and even the broader environment. Applied to elephants, chimpanzees, toucans and other species, it helps scientists determine the genetic diversity of groups and linkages with other groups. Such analysis can show changes in rates of inbreeding. Populations with greater genetic diversity adapt better to changes and environmental stressors than those with less diversity, thus reducing their risks of extinction, explains de Flamingh, a postdoctoral researcher at the University of Illinois Urbana-Champaign.

Analyzing fecal DNA also reveals information about an animal’s diet and health, and even nearby flora that is eaten. That information gives scientists broader insights into the ecosystem, and the findings are informing conservation initiatives. Examples include restoring or maintaining genetic connections among groups, ensuring access to certain foraging areas or increasing diversity in captive breeding programs.

Keep Reading Keep Reading
Gail Dutton
Gail Dutton has covered the biopharmaceutical industry as a journalist for the past three decades. She focuses on the intersection of business and science, and has written extensively for GEN – Genetic Engineering & Biotechnology News, Life Science Leader, The Scientist and BioSpace. Her articles also have appeared in Popular Science, Forbes, Entrepreneur and other publications.