A Drug Straight Out of Science Fiction Has Arrived
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Steve, a 60-year-old resident of the DC area who works in manufacturing, was always physically fit. In college, he played lacrosse in Division I, the highest level of intercollegiate athletics in the United States. Later, he stayed active by swimming, biking, and running--up until something strange happened around two years ago.
"It was hard for me to even get upstairs. I wasted away."
Steve, who requested that his last name be withheld to protect his privacy, started to notice weakness first in his toes, then his knees. On a trip to the zoo, he had trouble keeping up. Then some months later, the same thing happened on a family hike. What was supposed to be a four-mile trek up to see a waterfall ended for him at the quarter-mile mark. He turned around and struggled back to the start just as everyone else was returning from the excursion.
Alarmed, he sought out one doctor after the next, but none could diagnose him. The disabling weakness continued to creep up his legs, and by the time he got in to see a top neurologist at Johns Hopkins University last January, he was desperate for help.
"It was hard for me to even get upstairs," he recalls. "I wasted away and had lost about forty-five pounds."
The neurologist, Dr. Michael Polydefkis, finally made the correct diagnosis based on Steve's rapid progression of symptoms, a skin and nerve biopsy, and a genetic test. It turned out that Steve had a rare inherited disease called hereditary transthyretin amyloidosis. Transthyretin is a common blood protein whose normal function is to transport vitamins and hormones in the body. When patients possess certain genetic mutations in the transthyretin gene, the resulting protein can misfold, clump and produce amyloid, an aggregate of proteins, which then interferes with normal function. Many organs are affected in this disease, but most affected are the nervous system, the GI tract, and the heart.
Dr. Michael Polydefkis, Steve's neurologist at Johns Hopkins Bayview Medical Center in Baltimore, MD.
(Courtesy of Dr. Polydefkis)
For the 50,000 patients like Steve around the world, the only treatment historically has been a liver transplant—a major, risky operation. The liver makes most of the transthyretin in a person's body. So if a person who carries a genetic mutation for a disease-causing form of transthyretin has their liver transplanted, the new liver will stop making the mutant protein. A few drugs can slow, but do not stop the disease.
Since it is a genetic condition, a regular "drug" can't tackle the problem.
"For almost all of medicine from the 18th century to today, drugs have been small molecules, typically natural, some invented by humans, that bind to proteins and block their functions," explains Dr. Phillip Zamore, chair of the department of Biomedical Sciences at the University of Massachusetts Medical School. "But with most proteins (including this one), you can't imagine how that would ever happen. Because even if it stuck, there's no reason to think it would change anything. So people threw up their hands and said, 'Unless we can find a protein that is "druggable" in disease X, we can't treat it.'"
To draw a car analogy, treating a disease like Steve's with a small molecule would be like trying to shut down the entire car industry when all you can do is cut the power cord to one machine in one local factory. With few options, patients like Steve have been at a loss, facing continual deterioration and disability.
"It's more obvious how to be specific because we use the genetic code itself to design the drug."
A Radical New Approach
Luckily, Dr. Polydefkis knew of an experimental drug made by a biotech company that Dr. Zamore co-founded called Alnylam Pharmaceuticals. They were doing something completely different: silencing the chemical blueprint for protein, called RNA, rather than targeting the protein itself. In other words, shutting down all the bad factories across the whole car industry at once – without touching the good ones.
"It's more obvious how to be specific," says Dr. Zamore, "because we use the genetic code itself to design the drug."
For Steve's doctor, the new drug, called patisiran, is a game changer.
"It's the dawn of molecular medicine," says Dr. Polydefkis. "It's really a miraculous development. The ability to selectively knock down or reduce the amount of a specific protein is remarkable. I tell patients this is science fiction that is now becoming reality."
A (Very) Short History
The strategy of silencing RNA as a method of guiding drug development began in 1998. Basic research took six years before clinical testing in humans began in 2004. Just a few months ago, in November, the results of the first double-blind, placebo-controlled phase III trials were announced, testing patisiran in patients--and they surpassed expectations.
"The results were remarkably positive," says Dr. Polydefkis. "Every primary and secondary outcome measure target was met. It's the most positive trial I have ever been associated with and that I can remember in recent memory."
FDA approval is expected to come by summer, which will mark the first official sanction of a drug based on RNA inhibition (RNAi). Experts are confident that similar drugs will eventually follow for other diseases, like familial hypercholesterol, lipid disorders, and breathing disorders. Right now, these drugs must get into the liver to work, but otherwise the future treatment possibilities are wide open, according to Dr. Zamore.
"It doesn't have to be a genetic disease," he says. "In theory, it doesn't have to be just one gene, although I don't think anyone knows how many you could target at once. There is no precedent for targeting two."
Dr. Phillip Zamore, chair of the RNA Therapeutics Institute at the University of Massachusetts Medical School.
(Courtesy of Dr. Zamore)
Alnylam, the leading company in RNAi therapeutics, plans to strategically design other new drugs based on what they have learned from this first trial – "so with each successive experience, with designing and testing, you get better at making more drugs. In a way, that's never happened before...This is a lot more efficient of a way to make drugs in the future."
And unlike gene therapy, in which a patient's own genetic code is permanently altered, this approach does not cause permanent genetic changes. Patients can stop taking it like any other drug, and its effects will vanish.
How Is Steve?
Last February, Steve started on the drug. He was granted early access since it is not yet FDA-approved and is still considered experimental. Every 21 days, he has received an IV infusion that causes some minor side effects, like headaches and facial flushing.
"The good news is, since I started on the drug, I don't see any more deterioration other than my speech."
So far, it seems to be effective. He's gained back 20 pounds, and though his enunciation is still a bit slurred, he says that his neuropathy has stopped. He plans to continue the treatment for the rest of his life.
"The good news is, since I started on the drug, I don't see any more deterioration other than my speech," he says. "I think the drug is working, but would I have continued to deteriorate without the drug? I'm not really sure."
Dr. Polydefkis jumps in with a more confident response: "If you ask me, I would say 100 percent he would have kept progressing at a fairly rapid pace without the drug. When Steve says the neuropathy has stopped, that's music to my ears."
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Stronger psychedelics that rewire the brain, with Doug Drysdale
A promising development in science in recent years has been the use technology to optimize something natural. One-upping nature's wisdom isn't easy. In many cases, we haven't - and maybe we can't - figure it out. But today's episode features a fascinating example: using tech to optimize psychedelic mushrooms.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
These mushrooms have been used for religious, spiritual and medicinal purposes for thousands of years, but only in the past several decades have scientists brought psychedelics into the lab to enhance them and maximize their therapeutic value.
Today’s podcast guest, Doug Drysdale, is doing important work to lead this effort. Drysdale is the CEO of a company called Cybin that has figured out how to make psilocybin more potent, so it can be administered in smaller doses without side effects.
The natural form of psilocybin has been studied increasingly in the realm of mental health. Taking doses of these mushrooms appears to help people with anxiety and depression by spurring the development of connections in the brain, an example of neuroplasticity. The process basically shifts the adult brain from being fairly rigid like dried clay into a malleable substance like warm wax - the state of change that's constantly underway in the developing brains of children.
Neuroplasticity in adults seems to unlock some of our default ways of of thinking, the habitual thought patterns that’ve been associated with various mental health problems. Some promising research suggests that psilocybin causes a reset of sorts. It makes way for new, healthier thought patterns.
So what is Drysdale’s secret weapon to bring even more therapeutic value to psilocybin? It’s a process called deuteration. It focuses on the hydrogen atoms in psilocybin. These atoms are very light and don’t stick very well to carbon, which is another atom in psilocybin. As a result, our bodies can easily breaks down the bonds between the hydrogen and carbon atoms. For many people, that means psilocybin gets cleared from the body too quickly, before it can have a therapeutic benefit.
In deuteration, scientists do something simple but ingenious: they replace the hydrogen atoms with a molecule called deuterium. It’s twice as heavy as hydrogen and forms tighter bonds with the carbon. Because these pairs are so rock-steady, they slow down the rate at which psilocybin is metabolized, so it has more sustained effects on our brains.
Cybin isn’t Drysdale’s first go around at this - far from it. He has over 30 years of experience in the healthcare sector. During this time he’s raised around $4 billion of both public and private capital, and has been named Ernst and Young Entrepreneur of the Year. Before Cybin, he was the founding CEO of a pharmaceutical company called Alvogen, leading it from inception to around $500 million in revenues, across 35 countries. Drysdale has also been the head of mergers and acquisitions at Actavis Group, leading 15 corporate acquisitions across three continents.
In this episode, Drysdale walks us through the promising research of his current company, Cybin, and the different therapies he’s developing for anxiety and depression based not just on psilocybin but another psychedelic compound found in plants called DMT. He explains how they seem to have such powerful effects on the brain, as well as the potential for psychedelics to eventually support other use cases, including helping us strive toward higher levels of well-being. He goes on to discuss his views on mindfulness and lifestyle factors - such as optimal nutrition - that could help bring out hte best in psychedelics.
Show links:
Doug Drysdale full bio
Doug Drysdale twitter
Cybin website
Cybin development pipeline
Cybin's promising phase 2 research on depression
Johns Hopkins psychedelics research and psilocybin research
Mets owner Steve Cohen invests in psychedelic therapies
Doug Drysdale, CEO of Cybin
How the body's immune resilience affects our health and lifespan
Story by Big Think
It is a mystery why humans manifest vast differences in lifespan, health, and susceptibility to infectious diseases. However, a team of international scientists has revealed that the capacity to resist or recover from infections and inflammation (a trait they call “immune resilience”) is one of the major contributors to these differences.
Immune resilience involves controlling inflammation and preserving or rapidly restoring immune activity at any age, explained Weijing He, a study co-author. He and his colleagues discovered that people with the highest level of immune resilience were more likely to live longer, resist infection and recurrence of skin cancer, and survive COVID and sepsis.
Measuring immune resilience
The researchers measured immune resilience in two ways. The first is based on the relative quantities of two types of immune cells, CD4+ T cells and CD8+ T cells. CD4+ T cells coordinate the immune system’s response to pathogens and are often used to measure immune health (with higher levels typically suggesting a stronger immune system). However, in 2021, the researchers found that a low level of CD8+ T cells (which are responsible for killing damaged or infected cells) is also an important indicator of immune health. In fact, patients with high levels of CD4+ T cells and low levels of CD8+ T cells during SARS-CoV-2 and HIV infection were the least likely to develop severe COVID and AIDS.
Individuals with optimal levels of immune resilience were more likely to live longer.
In the same 2021 study, the researchers identified a second measure of immune resilience that involves two gene expression signatures correlated with an infected person’s risk of death. One of the signatures was linked to a higher risk of death; it includes genes related to inflammation — an essential process for jumpstarting the immune system but one that can cause considerable damage if left unbridled. The other signature was linked to a greater chance of survival; it includes genes related to keeping inflammation in check. These genes help the immune system mount a balanced immune response during infection and taper down the response after the threat is gone. The researchers found that participants who expressed the optimal combination of genes lived longer.
Immune resilience and longevity
The researchers assessed levels of immune resilience in nearly 50,000 participants of different ages and with various types of challenges to their immune systems, including acute infections, chronic diseases, and cancers. Their evaluation demonstrated that individuals with optimal levels of immune resilience were more likely to live longer, resist HIV and influenza infections, resist recurrence of skin cancer after kidney transplant, survive COVID infection, and survive sepsis.
However, a person’s immune resilience fluctuates all the time. Study participants who had optimal immune resilience before common symptomatic viral infections like a cold or the flu experienced a shift in their gene expression to poor immune resilience within 48 hours of symptom onset. As these people recovered from their infection, many gradually returned to the more favorable gene expression levels they had before. However, nearly 30% who once had optimal immune resilience did not fully regain that survival-associated profile by the end of the cold and flu season, even though they had recovered from their illness.
Intriguingly, some people who are 90+ years old still have optimal immune resilience, suggesting that these individuals’ immune systems have an exceptional capacity to control inflammation and rapidly restore proper immune balance.
This could suggest that the recovery phase varies among people and diseases. For example, young female sex workers who had many clients and did not use condoms — and thus were repeatedly exposed to sexually transmitted pathogens — had very low immune resilience. However, most of the sex workers who began reducing their exposure to sexually transmitted pathogens by using condoms and decreasing their number of sex partners experienced an improvement in immune resilience over the next 10 years.
Immune resilience and aging
The researchers found that the proportion of people with optimal immune resilience tended to be highest among the young and lowest among the elderly. The researchers suggest that, as people age, they are exposed to increasingly more health conditions (acute infections, chronic diseases, cancers, etc.) which challenge their immune systems to undergo a “respond-and-recover” cycle. During the response phase, CD8+ T cells and inflammatory gene expression increase, and during the recovery phase, they go back down.
However, over a lifetime of repeated challenges, the immune system is slower to recover, altering a person’s immune resilience. Intriguingly, some people who are 90+ years old still have optimal immune resilience, suggesting that these individuals’ immune systems have an exceptional capacity to control inflammation and rapidly restore proper immune balance despite the many respond-and-recover cycles that their immune systems have faced.
Public health ramifications could be significant. Immune cell and gene expression profile assessments are relatively simple to conduct, and being able to determine a person’s immune resilience can help identify whether someone is at greater risk for developing diseases, how they will respond to treatment, and whether, as well as to what extent, they will recover.