Enhancing Humans: Should We or Shouldn’t We?
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
A panel of leading experts gathered this week at a sold-out event in downtown Manhattan to talk about the science and the ethics of enhancing human beings -- making people "better than well" through biomedical interventions. Here are the ten most memorable quotes from their lively discussion, which was organized by the New York Academy of Sciences, the Aspen Brain Institute, and the Hastings Center.
1) "It's okay for us to be enhanced relative to our ancestors; we are with the smallpox vaccine." —Dr. George Church, iconic genetics pioneer; professor at Harvard University and MIT
Church was more concerned with equitable access to enhancements than the morality of intervening in the first place. "We missed the last person with polio and now it's spread around the world again," he lamented.
Discussing how enhancements might become part of our species in the near-future, he mentioned the possibility of doctors slightly "overshooting" an intervention to reverse cognitive decline, for example; or younger people using such an intervention off-label. Another way might be through organ transplants, using organs that are engineered to not get cancer, or to be resistant to pain, pathogens, or senescence.
2) "All the technology we will need to fundamentally transform our species already exists. Humans are made of code, and that code is writable, readable and hackable." —Dr. Jamie Metzl, a technology futurist and geopolitical expert; Senior Fellow of the Atlantic Council, an international affairs think tank
The speed of change is on an exponential curve, and the world where we're going is changing at a much faster rate than we're used to, Metzl said. For example, a baby born 1000 years ago compared to one born today would be basically the same. But a baby born 1000 years in the future would seem like superman to us now, thanks to new capabilities that will become embedded in future people's genes over time. So how will we get from here to there?
"We will line up for small incremental benefits. By the time people are that changed, we will have adapted to a whole new set of social norms."
But, he asked, will well-meaning changes dangerously limit the diversity of our species?
3) "We are locked in a competitive arms race on both an individual and communal level, which will make it very difficult to put the brakes on. Everybody needs to be part of this conversation because it's a conversation about the future of our species." —Jamie Metzl
China, for one, plans to genetically sequence half of all newborns by 2020. In the U.S., it is standard to screen for 34 health conditions in newborns (though the exact number varies by state). There are no national guidelines for newborn genomic screening, though the National Institutes of Health is currently funding several research studies to explore the ethical concerns, potential benefits, and limitations of doing so on a large scale.
4) "I find freedom in not directing exactly how my child will be." —Josephine Johnston, Director of Research at the Hastings Center, the world's oldest bioethics research institute
Johnston cautioned against a full-throttled embrace of biomedical enhancements. Parents seeking to remake nature to serve their own purpose would be "like helicopter parenting on steroids," she said. "It could be a kind of felt obligation, something parents don't want to do but feel they must in order to compete." She warned this would be "one way to totally ruin the parenting experience altogether. I would hate to be the kind of parent who selects and controls her child's traits and talents."
Among other concerns, she worried about parents aiming to comply with social norms through technological intervention. Would a black mom, for example, feel pressure to make her child's skin paler to alleviate racial bias?
5) "We need to seriously consider the risks of a future if a handful of private companies own and monetize a map of our thoughts at any given moment." – Meredith Whittaker, Research Scientist, Open Research Lead at Google, and Co-Director of New York University's AI Now Institute, examining the social implications of artificial intelligence
The recent boom in AI research is the result of the consolidation of the tech industry's resources; only seven companies have the means to create artificial intelligence at scale, and one of the innovations on the horizon is brain-computer interfaces.
Facebook, for example, has a team of 60 engineers working on BCIs to let you type with your mind. Elon Musk's company Neuralink is working on technology that is aiming for "direct lag-free interactions between our brains and our devices."
But who will own this data? In the future, could the National Security Agency ask Neuralink, et al. for your thought log?
6) "The economic, political, and social contexts are as important as the tech itself. We need to look at power, who gets to define normal, and who falls outside of this category?" – Meredith Whittaker
Raising concerns about AI bias, Whittaker discussed how data is often coded by affluent white men from the Bay Area, potentially perpetuating discrimination against women and racial minorities.
Facial recognition, she said, is 30 percent less accurate for black women than for white men. And voice recognition systems don't hear women's voices as well as men's, among many other examples. The big question is: "Who gets to decide what's normal? And how do we ensure that different versions of normal can exist between cultures and communities? It is impossible not see the high stakes here, and how oppressive classifications of normal can marginalize people."
From left: George Church, Jamie Metzl, Josephine Johnston, Meredith Whittaker
7) "We might draw a red line at cloning or germline enhancements, but when you define those or think of specific cases, you realize you threw the baby out with the bathwater." —George Church, answering a question about whether society should agree on any red lines to prohibit certain interventions
"We should be focusing on outcomes," he suggested. "Could enhancement be a consequence of curing a disease like cognitive decline? That would concern me about drawing red lines."
8) "We have the technology to create Black Mirror. We could create a social credit score and it's terrifying." —Meredith Whittaker
In China, she said, the government is calculating scores to rank citizens based on aggregates of data like their educational history, their friend graphs, their employment and credit history, and their record of being critical of the government. These scores have already been used to bar 12 million people from travel.
"If we don't have the ability to make a choice," she said, "it could be a very frightening future."
9) "These tools will make all kinds of wonderful realities possible. Nobody looks at someone dying of cancer and says that's natural." —Jamie Metzl
Using biomedical interventions to restore health is an unequivocal moral good. But other experts questioned whether there should be a limit in how far these technologies are taken to achieve normalcy and beyond.
10) "Cancer's the easy one; what about deafness?" —Josephine Johnston, in retort
Could one person's disability be another person's desired state? "We should be so suspicious" of using technology to eradicate different ways of being in the world, she warned. Hubris has led us down the wrong path in the past, such as when homosexuality was considered a mental disorder.
"If we sometimes make mistakes about disease or dysfunction," she said, "we might make mistakes about what is a valid experience of the human condition."
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
If you were one of the millions who masked up, washed your hands thoroughly and socially distanced, pat yourself on the back—you may have helped change the course of human history.
Scientists say that thanks to these safety precautions, which were introduced in early 2020 as a way to stop transmission of the novel COVID-19 virus, a strain of influenza has been completely eliminated. This marks the first time in human history that a virus has been wiped out through non-pharmaceutical interventions, such as vaccines.
The flu shot, explained
Influenza viruses type A and B are responsible for the majority of human illnesses and the flu season.
Centers for Disease Control
For more than a decade, flu shots have protected against two types of the influenza virus–type A and type B. While there are four different strains of influenza in existence (A, B, C, and D), only strains A, B, and C are capable of infecting humans, and only A and B cause pandemics. In other words, if you catch the flu during flu season, you’re most likely sick with flu type A or B.
Flu vaccines contain inactivated—or dead—influenza virus. These inactivated viruses can’t cause sickness in humans, but when administered as part of a vaccine, they teach a person’s immune system to recognize and kill those viruses when they’re encountered in the wild.
Each spring, a panel of experts gives a recommendation to the US Food and Drug Administration on which strains of each flu type to include in that year’s flu vaccine, depending on what surveillance data says is circulating and what they believe is likely to cause the most illness during the upcoming flu season. For the past decade, Americans have had access to vaccines that provide protection against two strains of influenza A and two lineages of influenza B, known as the Victoria lineage and the Yamagata lineage. But this year, the seasonal flu shot won’t include the Yamagata strain, because the Yamagata strain is no longer circulating among humans.
How Yamagata Disappeared
Flu surveillance data from the Global Initiative on Sharing All Influenza Data (GISAID) shows that the Yamagata lineage of flu type B has not been sequenced since April 2020.
Nature
Experts believe that the Yamagata lineage had already been in decline before the pandemic hit, likely because the strain was naturally less capable of infecting large numbers of people compared to the other strains. When the COVID-19 pandemic hit, the resulting safety precautions such as social distancing, isolating, hand-washing, and masking were enough to drive the virus into extinction completely.
Because the strain hasn’t been circulating since 2020, the FDA elected to remove the Yamagata strain from the seasonal flu vaccine. This will mark the first time since 2012 that the annual flu shot will be trivalent (three-component) rather than quadrivalent (four-component).
Should I still get the flu shot?
The flu shot will protect against fewer strains this year—but that doesn’t mean we should skip it. Influenza places a substantial health burden on the United States every year, responsible for hundreds of thousands of hospitalizations and tens of thousands of deaths. The flu shot has been shown to prevent millions of illnesses each year (more than six million during the 2022-2023 season). And while it’s still possible to catch the flu after getting the flu shot, studies show that people are far less likely to be hospitalized or die when they’re vaccinated.
Another unexpected benefit of dropping the Yamagata strain from the seasonal vaccine? This will possibly make production of the flu vaccine faster, and enable manufacturers to make more vaccines, helping countries who have a flu vaccine shortage and potentially saving millions more lives.
After his grandmother’s dementia diagnosis, one man invented a snack to keep her healthy and hydrated.
On a visit to his grandmother’s nursing home in 2016, college student Lewis Hornby made a shocking discovery: Dehydration is a common (and dangerous) problem among seniors—especially those that are diagnosed with dementia.
Hornby’s grandmother, Pat, had always had difficulty keeping up her water intake as she got older, a common issue with seniors. As we age, our body composition changes, and we naturally hold less water than younger adults or children, so it’s easier to become dehydrated quickly if those fluids aren’t replenished. What’s more, our thirst signals diminish naturally as we age as well—meaning our body is not as good as it once was in letting us know that we need to rehydrate. This often creates a perfect storm that commonly leads to dehydration. In Pat’s case, her dehydration was so severe she nearly died.
When Lewis Hornby visited his grandmother at her nursing home afterward, he learned that dehydration especially affects people with dementia, as they often don’t feel thirst cues at all, or may not recognize how to use cups correctly. But while dementia patients often don’t remember to drink water, it seemed to Hornby that they had less problem remembering to eat, particularly candy.
Where people with dementia often forget to drink water, they're more likely to pick up a colorful snack, Hornby found. alzheimers.org.uk
Hornby wanted to create a solution for elderly people who struggled keeping their fluid intake up. He spent the next eighteen months researching and designing a solution and securing funding for his project. In 2019, Hornby won a sizable grant from the Alzheimer’s Society, a UK-based care and research charity for people with dementia and their caregivers. Together, through the charity’s Accelerator Program, they created a bite-sized, sugar-free, edible jelly drop that looked and tasted like candy. The candy, called Jelly Drops, contained 95% water and electrolytes—important minerals that are often lost during dehydration. The final product launched in 2020—and was an immediate success. The drops were able to provide extra hydration to the elderly, as well as help keep dementia patients safe, since dehydration commonly leads to confusion, hospitalization, and sometimes even death.
Not only did Jelly Drops quickly become a favorite snack among dementia patients in the UK, but they were able to provide an additional boost of hydration to hospital workers during the pandemic. In NHS coronavirus hospital wards, patients infected with the virus were regularly given Jelly Drops to keep their fluid levels normal—and staff members snacked on them as well, since long shifts and personal protective equipment (PPE) they were required to wear often left them feeling parched.
In April 2022, Jelly Drops launched in the United States. The company continues to donate 1% of its profits to help fund Alzheimer’s research.