Gene Editing of Embryos Is Both Ethical and Prudent
BIG QUESTION OF THE MONTH: Should we use CRISPR, the new technique that enables precise DNA editing, to change the genes of human embryos to eradicate disease--or even to enhance desirable traits? LeapsMag invited three leading experts to weigh in.
Now that researchers around the world have begun to edit the genes of human embryos with CRISPR, the ethical debate has become more timely than ever: Should this kind of research be on the table or categorically ruled out?
All of us need gene editing to be pursued, and if possible, made safe enough to use in humans. Not only to pave the way for effective procedures on adults, but more importantly, to keep open the possibility of using gene editing to protect embryos from susceptibility to major diseases and to prevent other debilitating genetic conditions from being passed on through them to future generations.
Objections to gene editing in embryos rest on three fallacious arguments:
- Gene editing is wrong because it affects future generations, the argument being that the human germline is sacred and inviolable.
- It constitutes an unknown and therefore unacceptable risk to future generations.
- The inability to obtain the consent of those future generations means we must not use gene editing.
We should be clear that there is no precautionary approach; just as justice delayed is justice denied, so therapy delayed is therapy denied.
Regarding the first point, many objections to germline interventions emphasize that such interventions are objectionable in that they affect "generations down the line". But this is true, not only of all assisted reproductive technologies, but of all reproduction of any kind.
Sexual reproduction would never have been licensed by regulators
As for the second point, every year an estimated 7.9 million children - 6% of total births worldwide - are born with a serious birth defect of genetic or partially genetic origin. Had sexual reproduction been invented by scientists rather than resulting from our evolved biology, it would never have been licensed by regulators - far too inefficient and dangerous!
If the appropriate benchmark for permissible risk of harm to future generations is sexual reproduction, other germline-changing techniques would need to demonstrate severe foreseeable dangers to fail.
Raising the third point in his statement on gene-editing in human embryos, Francis S. Collins, director of the National Institutes of Health, stated: "The strong arguments against engaging in this activity remain … These include the serious and unquantifiable safety issues, ethical issues presented by altering the germline in a way that affects the next generation without their consent."
"Serious and unquantifiable" safety issues feature in all new technologies but consent is simply irrelevant for the simple and sufficient reason that there are no relevant people in existence capable of either giving or withholding consent to these sorts of changes in their own germline.
We all have to make decisions for future people without considering their inevitably absent consent. All would-be/might-be parents make numerous decisions about issues that might affect their future children. They do this all the time without thinking about consent of the children.
George Bernard Shaw and Isadora Duncan were possibly apocryphal exceptions. She, apparently, said to him something like: "Why don't we have a child? With my looks and your brains it cannot fail," and received Shaw's more rational assessment: "Yes, but what if it has my looks and your brains?"
If there is a discernible duty here, it is surely to try to create the best possible child, a child who will be the healthiest, most intelligent and most resilient to disease reasonably possible given the parents' other priorities. This is why we educate and vaccinate our children and give them a good diet if we can. That is what it is to act for the best, all things considered. This we have moral reasons to do; but they are not necessarily overriding reasons.
"There is no morally significant line between therapy and enhancement."
There is no morally significant line that can be drawn between therapy and enhancement. As I write these words in my London apartment, I am bathed in synthetic sunshine, one of the oldest and most amazing enhancement technologies. Before its invention, our ancestors had to rest or hide in the dark. With the advent of synthetic sunshine--firelight, candlelight, lamplight and electric light--we could work and play as long as we wished.Steven Hawking initially predicted that we might have about 7.6 billion years to go before the Earth gives up on us; he recently revised his position in relation to the Earth's continuing habitability as opposed to its physical survival: "We must also continue to go into space for the future of humanity," he said recently. "I don't think we will survive another thousand years without escaping beyond our fragile planet."
We will at some point have to escape both beyond our fragile planet and our fragile nature. One way to enhance our capacity to do both these things is by improving on human nature where we can do so in ways that are "safe enough." What we all have an inescapable moral duty to do is to continue with scientific investigation of gene editing techniques to the point at which we can make a rational choice. We must certainly not stop now.
At the end of a 2015 summit where I spoke about this issue, the renowned Harvard geneticist George Church noted that gene editing "opens up the possibility of not just transplantation from pigs to humans but the whole idea that a pig organ is perfectible…Gene editing could ensure the organs are very clean, available on demand and healthy, so they could be superior to human donor organs."
"We know for sure that in the future there will be no more human beings and no more planet Earth."
We know for sure that in the future there will be no more human beings and no more planet Earth. Either we will have been wiped out by our own foolishness or by brute forces of nature, or we will have further evolved by a process more rational and much quicker than Darwinian evolution--a process I described in my book Enhancing Evolution. Even more certain is that there will be no more planet Earth. Our sun will die, and with it, all possibility of life on this planet.As I say in my recent book How to Be Good:
By the time this happens, we may hope that our better evolved successors will have developed the science and the technology needed to survive and to enable us (them) to find and colonize another planet or perhaps even to build another planet; and in the meanwhile, to cope better with the problems presented by living on this planet.
Editor's Note: Check out the viewpoints expressing condemnation and mild curiosity.
If you were one of the millions who masked up, washed your hands thoroughly and socially distanced, pat yourself on the back—you may have helped change the course of human history.
Scientists say that thanks to these safety precautions, which were introduced in early 2020 as a way to stop transmission of the novel COVID-19 virus, a strain of influenza has been completely eliminated. This marks the first time in human history that a virus has been wiped out through non-pharmaceutical interventions, such as vaccines.
The flu shot, explained
Influenza viruses type A and B are responsible for the majority of human illnesses and the flu season.
Centers for Disease Control
For more than a decade, flu shots have protected against two types of the influenza virus–type A and type B. While there are four different strains of influenza in existence (A, B, C, and D), only strains A, B, and C are capable of infecting humans, and only A and B cause pandemics. In other words, if you catch the flu during flu season, you’re most likely sick with flu type A or B.
Flu vaccines contain inactivated—or dead—influenza virus. These inactivated viruses can’t cause sickness in humans, but when administered as part of a vaccine, they teach a person’s immune system to recognize and kill those viruses when they’re encountered in the wild.
Each spring, a panel of experts gives a recommendation to the US Food and Drug Administration on which strains of each flu type to include in that year’s flu vaccine, depending on what surveillance data says is circulating and what they believe is likely to cause the most illness during the upcoming flu season. For the past decade, Americans have had access to vaccines that provide protection against two strains of influenza A and two lineages of influenza B, known as the Victoria lineage and the Yamagata lineage. But this year, the seasonal flu shot won’t include the Yamagata strain, because the Yamagata strain is no longer circulating among humans.
How Yamagata Disappeared
Flu surveillance data from the Global Initiative on Sharing All Influenza Data (GISAID) shows that the Yamagata lineage of flu type B has not been sequenced since April 2020.
Nature
Experts believe that the Yamagata lineage had already been in decline before the pandemic hit, likely because the strain was naturally less capable of infecting large numbers of people compared to the other strains. When the COVID-19 pandemic hit, the resulting safety precautions such as social distancing, isolating, hand-washing, and masking were enough to drive the virus into extinction completely.
Because the strain hasn’t been circulating since 2020, the FDA elected to remove the Yamagata strain from the seasonal flu vaccine. This will mark the first time since 2012 that the annual flu shot will be trivalent (three-component) rather than quadrivalent (four-component).
Should I still get the flu shot?
The flu shot will protect against fewer strains this year—but that doesn’t mean we should skip it. Influenza places a substantial health burden on the United States every year, responsible for hundreds of thousands of hospitalizations and tens of thousands of deaths. The flu shot has been shown to prevent millions of illnesses each year (more than six million during the 2022-2023 season). And while it’s still possible to catch the flu after getting the flu shot, studies show that people are far less likely to be hospitalized or die when they’re vaccinated.
Another unexpected benefit of dropping the Yamagata strain from the seasonal vaccine? This will possibly make production of the flu vaccine faster, and enable manufacturers to make more vaccines, helping countries who have a flu vaccine shortage and potentially saving millions more lives.
After his grandmother’s dementia diagnosis, one man invented a snack to keep her healthy and hydrated.
On a visit to his grandmother’s nursing home in 2016, college student Lewis Hornby made a shocking discovery: Dehydration is a common (and dangerous) problem among seniors—especially those that are diagnosed with dementia.
Hornby’s grandmother, Pat, had always had difficulty keeping up her water intake as she got older, a common issue with seniors. As we age, our body composition changes, and we naturally hold less water than younger adults or children, so it’s easier to become dehydrated quickly if those fluids aren’t replenished. What’s more, our thirst signals diminish naturally as we age as well—meaning our body is not as good as it once was in letting us know that we need to rehydrate. This often creates a perfect storm that commonly leads to dehydration. In Pat’s case, her dehydration was so severe she nearly died.
When Lewis Hornby visited his grandmother at her nursing home afterward, he learned that dehydration especially affects people with dementia, as they often don’t feel thirst cues at all, or may not recognize how to use cups correctly. But while dementia patients often don’t remember to drink water, it seemed to Hornby that they had less problem remembering to eat, particularly candy.
Where people with dementia often forget to drink water, they're more likely to pick up a colorful snack, Hornby found. alzheimers.org.uk
Hornby wanted to create a solution for elderly people who struggled keeping their fluid intake up. He spent the next eighteen months researching and designing a solution and securing funding for his project. In 2019, Hornby won a sizable grant from the Alzheimer’s Society, a UK-based care and research charity for people with dementia and their caregivers. Together, through the charity’s Accelerator Program, they created a bite-sized, sugar-free, edible jelly drop that looked and tasted like candy. The candy, called Jelly Drops, contained 95% water and electrolytes—important minerals that are often lost during dehydration. The final product launched in 2020—and was an immediate success. The drops were able to provide extra hydration to the elderly, as well as help keep dementia patients safe, since dehydration commonly leads to confusion, hospitalization, and sometimes even death.
Not only did Jelly Drops quickly become a favorite snack among dementia patients in the UK, but they were able to provide an additional boost of hydration to hospital workers during the pandemic. In NHS coronavirus hospital wards, patients infected with the virus were regularly given Jelly Drops to keep their fluid levels normal—and staff members snacked on them as well, since long shifts and personal protective equipment (PPE) they were required to wear often left them feeling parched.
In April 2022, Jelly Drops launched in the United States. The company continues to donate 1% of its profits to help fund Alzheimer’s research.