Genetic Engineering For All: The Last Great Frontier of Human Freedom
[Editor's Note: This op/ed appears in response to January's Big Moral Question: "Where should we draw a line, if any, between the use of gene editing for the prevention and treatment of disease, and for cosmetic enhancement?" Currently, it is illegal to develop human trials for the latter in the U.S.]
Homo sapien: a bipedal primate that is thought to be the only animal to construct a moral code. Despite the genetic differences between members of our species being less than 1 percent, we come in all shapes, sizes and colors. There is no normal for human genetics.
I believe genetic freedom is the most basic human right we all should have.
One DNA base change here, another there brings us humans with light skin, red hair and big muscles. Want to be an NBA All-Star? Your genes are by far the largest determinant of your height and well, there has never been an All-Star under 5'9". Sexual reproduction makes it so that our physical traits seem more a pinch of this and a dash of that than some precise architectural masterpiece. For the most part we have no control over whether we or our children will be the next Cristiano Ronaldo or are born with a debilitating disease--unless we use genetic engineering.
Anywhere from 64% in the US to over 82% of people in China support genetic modification of individuals to help treat diseases. I imagine that number will only increase as people become more familiar with the technology and I don't think most people need convincing that genetic modification for medical treatment is a good thing. In fact, most modern drugs are genetic regulation on a fundamental level. But cosmetic genetic modification is far more controversial with only 39% of people in the US finding it agreeable. Far fewer people support modifying the genes of babies before they are born. My question is: Where does one draw a line between cosmetic and medical genetic changes?
Modifying the genetics of individuals for medical reasons started in the late 1980s and early 1990s when scientists reprogrammed viruses so that instead of causing harm when they infected people, they changed the genetics of their cells. Much has changed and and despite the success of many gene therapy trials, people are still afraid. Perhaps because of concerns over safety, but gene therapies have been tested in over 2000 clinical trials in hundreds of thousands of people. So what are we so afraid of? I asked myself that same question in 2016 and could not find a basis for the fear and so performed the first successfully cosmetic human genetic modification by putting a jellyfish gene in my skin. The experiment was simple, the monetary cost minimal, and though my skin didn't fluoresce like a jellyfish, DNA testing showed it worked and the experiment showed me what was possible.
People are afraid because we are on the cusp of the human race changing as we know it. But isn't that change all we have been striving for?
In late 2017, I wanted to explore bigger cosmetic changes, so I did another genetic experiment on myself; I injected myself with a CRISPR/Cas9 system meant to modify myostatin, a gene responsible for muscle growth and fat loss. I didn't do it because I wanted bigger muscles but because the myostatin gene is a well-studied target that has been modified in many mammals using CRISPR. I feel a responsibility to try and push boundaries that scientists in universities and large corporations can't because of committees, regulations and social acceptability. When this cutting-edge technique was tried for the first time, it wasn't in an expensive lab and it didn't cost millions of dollars. It was done by me, prepared in my home lab, and the cost of this cosmetic treatment was under $500.
Home genetic engineering lab kits like this are sold by Zayner's company for less than $2000.
I have had many people call me crazy and worse, but they don't understand that I've undertaken these experiments with much thought and hesitation. Experimenting on oneself isn't fun; it is an unfortunate situation to be in as a Ph.D. scientist who less than two years ago was fulfilling a prestigious synthetic biology fellowship at NASA. The data points to the experiment being relatively safe, and similar experimental protocols have had success, so why wait? When so much is at stake, we need to show people what is possible so that one day we all can have genetic freedom.
Zayner's arm after attempting the first CRISPR injection showed little immune response; a small red dot in the upper left forearm can be seen at the injection site.
People are afraid because we are on the cusp of the human race changing as we know it. But isn't that change all we have been striving for yet unable to obtain? Have too much or too little hair? There is a non-gene therapy treatment for that. Want to change your appearance? The global cosmetic surgery market is over $15 billion. Tattoos, dyed hair and piercings abound. We sculpt our appearance by exercise, make-up, drugs, chemicals and invasive surgeries. We try so hard to fight against our genetics in every way except genetic modification.
Being human means freedom to be who we want to be. And at the moment, no one gets to choose their genetics. Instead, nature plays a probabilistic role in the most primitive genetic engineering experiment of sexual reproduction. This dice roll can sometimes end in tragedy. Fortunately, in my case I was born with the genetics of a healthy individual. Still, I push for everyone and though my newest genetic modification experiment is ongoing, even if it doesn't work, it is only a matter of time until it does in someone.
If you prevent someone like me from changing my genetics, where do you draw the line? Only people who can't walk can get genetic modification? Only people who can't run? Only people who are predisposed to skin cancer? Don't we all deserve a choice or to give parents better ones? I believe genetic freedom is the most basic human right we all should have. We no longer need to be slaves to genetics so let's break those bonds and embrace the change brought about by allowing human genetic engineering for all no matter the reason.
[Ed. Note: Check out the opposite perspective: "Hacking Your Own Genes: A Recipe for Disaster." Then follow LeapsMag on social media to share your opinion.]
A sleek, four-foot tall white robot glides across a cafe storefront in Tokyo’s Nihonbashi district, holding a two-tiered serving tray full of tea sandwiches and pastries. The cafe’s patrons smile and say thanks as they take the tray—but it’s not the robot they’re thanking. Instead, the patrons are talking to the person controlling the robot—a restaurant employee who operates the avatar from the comfort of their home.
It’s a typical scene at DAWN, short for Diverse Avatar Working Network—a cafe that launched in Tokyo six years ago as an experimental pop-up and quickly became an overnight success. Today, the cafe is a permanent fixture in Nihonbashi, staffing roughly 60 remote workers who control the robots remotely and communicate to customers via a built-in microphone.
More than just a creative idea, however, DAWN is being hailed as a life-changing opportunity. The workers who control the robots remotely (known as “pilots”) all have disabilities that limit their ability to move around freely and travel outside their homes. Worldwide, an estimated 16 percent of the global population lives with a significant disability—and according to the World Health Organization, these disabilities give rise to other problems, such as exclusion from education, unemployment, and poverty.
These are all problems that Kentaro Yoshifuji, founder and CEO of Ory Laboratory, which supplies the robot servers at DAWN, is looking to correct. Yoshifuji, who was bedridden for several years in high school due to an undisclosed health problem, launched the company to help enable people who are house-bound or bedridden to more fully participate in society, as well as end the loneliness, isolation, and feelings of worthlessness that can sometimes go hand-in-hand with being disabled.
“It’s heartbreaking to think that [people with disabilities] feel they are a burden to society, or that they fear their families suffer by caring for them,” said Yoshifuji in an interview in 2020. “We are dedicating ourselves to providing workable, technology-based solutions. That is our purpose.”
Shota Kuwahara, a DAWN employee with muscular dystrophy. Ory Labs, Inc.
Wanting to connect with others and feel useful is a common sentiment that’s shared by the workers at DAWN. Marianne, a mother of two who lives near Mt. Fuji, Japan, is functionally disabled due to chronic pain and fatigue. Working at DAWN has allowed Marianne to provide for her family as well as help alleviate her loneliness and grief.Shota, Kuwahara, a DAWN employee with muscular dystrophy, agrees. "There are many difficulties in my daily life, but I believe my life has a purpose and is not being wasted," he says. "Being useful, able to help other people, even feeling needed by others, is so motivational."
When a patient is diagnosed with early-stage breast cancer, having surgery to remove the tumor is considered the standard of care. But what happens when a patient can’t have surgery?
Whether it’s due to high blood pressure, advanced age, heart issues, or other reasons, some breast cancer patients don’t qualify for a lumpectomy—one of the most common treatment options for early-stage breast cancer. A lumpectomy surgically removes the tumor while keeping the patient’s breast intact, while a mastectomy removes the entire breast and nearby lymph nodes.
Fortunately, a new technique called cryoablation is now available for breast cancer patients who either aren’t candidates for surgery or don’t feel comfortable undergoing a surgical procedure. With cryoablation, doctors use an ultrasound or CT scan to locate any tumors inside the patient’s breast. They then insert small, needle-like probes into the patient's breast which create an “ice ball” that surrounds the tumor and kills the cancer cells.
Cryoablation has been used for decades to treat cancers of the kidneys and liver—but only in the past few years have doctors been able to use the procedure to treat breast cancer patients. And while clinical trials have shown that cryoablation works for tumors smaller than 1.5 centimeters, a recent clinical trial at Memorial Sloan Kettering Cancer Center in New York has shown that it can work for larger tumors, too.
In this study, doctors performed cryoablation on patients whose tumors were, on average, 2.5 centimeters. The cryoablation procedure lasted for about 30 minutes, and patients were able to go home on the same day following treatment. Doctors then followed up with the patients after 16 months. In the follow-up, doctors found the recurrence rate for tumors after using cryoablation was only 10 percent.
For patients who don’t qualify for surgery, radiation and hormonal therapy is typically used to treat tumors. However, said Yolanda Brice, M.D., an interventional radiologist at Memorial Sloan Kettering Cancer Center, “when treated with only radiation and hormonal therapy, the tumors will eventually return.” Cryotherapy, Brice said, could be a more effective way to treat cancer for patients who can’t have surgery.
“The fact that we only saw a 10 percent recurrence rate in our study is incredibly promising,” she said.