Genetic Engineering For All: The Last Great Frontier of Human Freedom
[Editor's Note: This op/ed appears in response to January's Big Moral Question: "Where should we draw a line, if any, between the use of gene editing for the prevention and treatment of disease, and for cosmetic enhancement?" Currently, it is illegal to develop human trials for the latter in the U.S.]
Homo sapien: a bipedal primate that is thought to be the only animal to construct a moral code. Despite the genetic differences between members of our species being less than 1 percent, we come in all shapes, sizes and colors. There is no normal for human genetics.
I believe genetic freedom is the most basic human right we all should have.
One DNA base change here, another there brings us humans with light skin, red hair and big muscles. Want to be an NBA All-Star? Your genes are by far the largest determinant of your height and well, there has never been an All-Star under 5'9". Sexual reproduction makes it so that our physical traits seem more a pinch of this and a dash of that than some precise architectural masterpiece. For the most part we have no control over whether we or our children will be the next Cristiano Ronaldo or are born with a debilitating disease--unless we use genetic engineering.
Anywhere from 64% in the US to over 82% of people in China support genetic modification of individuals to help treat diseases. I imagine that number will only increase as people become more familiar with the technology and I don't think most people need convincing that genetic modification for medical treatment is a good thing. In fact, most modern drugs are genetic regulation on a fundamental level. But cosmetic genetic modification is far more controversial with only 39% of people in the US finding it agreeable. Far fewer people support modifying the genes of babies before they are born. My question is: Where does one draw a line between cosmetic and medical genetic changes?
Modifying the genetics of individuals for medical reasons started in the late 1980s and early 1990s when scientists reprogrammed viruses so that instead of causing harm when they infected people, they changed the genetics of their cells. Much has changed and and despite the success of many gene therapy trials, people are still afraid. Perhaps because of concerns over safety, but gene therapies have been tested in over 2000 clinical trials in hundreds of thousands of people. So what are we so afraid of? I asked myself that same question in 2016 and could not find a basis for the fear and so performed the first successfully cosmetic human genetic modification by putting a jellyfish gene in my skin. The experiment was simple, the monetary cost minimal, and though my skin didn't fluoresce like a jellyfish, DNA testing showed it worked and the experiment showed me what was possible.
People are afraid because we are on the cusp of the human race changing as we know it. But isn't that change all we have been striving for?
In late 2017, I wanted to explore bigger cosmetic changes, so I did another genetic experiment on myself; I injected myself with a CRISPR/Cas9 system meant to modify myostatin, a gene responsible for muscle growth and fat loss. I didn't do it because I wanted bigger muscles but because the myostatin gene is a well-studied target that has been modified in many mammals using CRISPR. I feel a responsibility to try and push boundaries that scientists in universities and large corporations can't because of committees, regulations and social acceptability. When this cutting-edge technique was tried for the first time, it wasn't in an expensive lab and it didn't cost millions of dollars. It was done by me, prepared in my home lab, and the cost of this cosmetic treatment was under $500.
Home genetic engineering lab kits like this are sold by Zayner's company for less than $2000.
I have had many people call me crazy and worse, but they don't understand that I've undertaken these experiments with much thought and hesitation. Experimenting on oneself isn't fun; it is an unfortunate situation to be in as a Ph.D. scientist who less than two years ago was fulfilling a prestigious synthetic biology fellowship at NASA. The data points to the experiment being relatively safe, and similar experimental protocols have had success, so why wait? When so much is at stake, we need to show people what is possible so that one day we all can have genetic freedom.
Zayner's arm after attempting the first CRISPR injection showed little immune response; a small red dot in the upper left forearm can be seen at the injection site.
People are afraid because we are on the cusp of the human race changing as we know it. But isn't that change all we have been striving for yet unable to obtain? Have too much or too little hair? There is a non-gene therapy treatment for that. Want to change your appearance? The global cosmetic surgery market is over $15 billion. Tattoos, dyed hair and piercings abound. We sculpt our appearance by exercise, make-up, drugs, chemicals and invasive surgeries. We try so hard to fight against our genetics in every way except genetic modification.
Being human means freedom to be who we want to be. And at the moment, no one gets to choose their genetics. Instead, nature plays a probabilistic role in the most primitive genetic engineering experiment of sexual reproduction. This dice roll can sometimes end in tragedy. Fortunately, in my case I was born with the genetics of a healthy individual. Still, I push for everyone and though my newest genetic modification experiment is ongoing, even if it doesn't work, it is only a matter of time until it does in someone.
If you prevent someone like me from changing my genetics, where do you draw the line? Only people who can't walk can get genetic modification? Only people who can't run? Only people who are predisposed to skin cancer? Don't we all deserve a choice or to give parents better ones? I believe genetic freedom is the most basic human right we all should have. We no longer need to be slaves to genetics so let's break those bonds and embrace the change brought about by allowing human genetic engineering for all no matter the reason.
[Ed. Note: Check out the opposite perspective: "Hacking Your Own Genes: A Recipe for Disaster." Then follow LeapsMag on social media to share your opinion.]
If you were one of the millions who masked up, washed your hands thoroughly and socially distanced, pat yourself on the back—you may have helped change the course of human history.
Scientists say that thanks to these safety precautions, which were introduced in early 2020 as a way to stop transmission of the novel COVID-19 virus, a strain of influenza has been completely eliminated. This marks the first time in human history that a virus has been wiped out through non-pharmaceutical interventions, such as vaccines.
The flu shot, explained
Influenza viruses type A and B are responsible for the majority of human illnesses and the flu season.
Centers for Disease Control
For more than a decade, flu shots have protected against two types of the influenza virus–type A and type B. While there are four different strains of influenza in existence (A, B, C, and D), only strains A, B, and C are capable of infecting humans, and only A and B cause pandemics. In other words, if you catch the flu during flu season, you’re most likely sick with flu type A or B.
Flu vaccines contain inactivated—or dead—influenza virus. These inactivated viruses can’t cause sickness in humans, but when administered as part of a vaccine, they teach a person’s immune system to recognize and kill those viruses when they’re encountered in the wild.
Each spring, a panel of experts gives a recommendation to the US Food and Drug Administration on which strains of each flu type to include in that year’s flu vaccine, depending on what surveillance data says is circulating and what they believe is likely to cause the most illness during the upcoming flu season. For the past decade, Americans have had access to vaccines that provide protection against two strains of influenza A and two lineages of influenza B, known as the Victoria lineage and the Yamagata lineage. But this year, the seasonal flu shot won’t include the Yamagata strain, because the Yamagata strain is no longer circulating among humans.
How Yamagata Disappeared
Flu surveillance data from the Global Initiative on Sharing All Influenza Data (GISAID) shows that the Yamagata lineage of flu type B has not been sequenced since April 2020.
Nature
Experts believe that the Yamagata lineage had already been in decline before the pandemic hit, likely because the strain was naturally less capable of infecting large numbers of people compared to the other strains. When the COVID-19 pandemic hit, the resulting safety precautions such as social distancing, isolating, hand-washing, and masking were enough to drive the virus into extinction completely.
Because the strain hasn’t been circulating since 2020, the FDA elected to remove the Yamagata strain from the seasonal flu vaccine. This will mark the first time since 2012 that the annual flu shot will be trivalent (three-component) rather than quadrivalent (four-component).
Should I still get the flu shot?
The flu shot will protect against fewer strains this year—but that doesn’t mean we should skip it. Influenza places a substantial health burden on the United States every year, responsible for hundreds of thousands of hospitalizations and tens of thousands of deaths. The flu shot has been shown to prevent millions of illnesses each year (more than six million during the 2022-2023 season). And while it’s still possible to catch the flu after getting the flu shot, studies show that people are far less likely to be hospitalized or die when they’re vaccinated.
Another unexpected benefit of dropping the Yamagata strain from the seasonal vaccine? This will possibly make production of the flu vaccine faster, and enable manufacturers to make more vaccines, helping countries who have a flu vaccine shortage and potentially saving millions more lives.
After his grandmother’s dementia diagnosis, one man invented a snack to keep her healthy and hydrated.
On a visit to his grandmother’s nursing home in 2016, college student Lewis Hornby made a shocking discovery: Dehydration is a common (and dangerous) problem among seniors—especially those that are diagnosed with dementia.
Hornby’s grandmother, Pat, had always had difficulty keeping up her water intake as she got older, a common issue with seniors. As we age, our body composition changes, and we naturally hold less water than younger adults or children, so it’s easier to become dehydrated quickly if those fluids aren’t replenished. What’s more, our thirst signals diminish naturally as we age as well—meaning our body is not as good as it once was in letting us know that we need to rehydrate. This often creates a perfect storm that commonly leads to dehydration. In Pat’s case, her dehydration was so severe she nearly died.
When Lewis Hornby visited his grandmother at her nursing home afterward, he learned that dehydration especially affects people with dementia, as they often don’t feel thirst cues at all, or may not recognize how to use cups correctly. But while dementia patients often don’t remember to drink water, it seemed to Hornby that they had less problem remembering to eat, particularly candy.
Where people with dementia often forget to drink water, they're more likely to pick up a colorful snack, Hornby found. alzheimers.org.uk
Hornby wanted to create a solution for elderly people who struggled keeping their fluid intake up. He spent the next eighteen months researching and designing a solution and securing funding for his project. In 2019, Hornby won a sizable grant from the Alzheimer’s Society, a UK-based care and research charity for people with dementia and their caregivers. Together, through the charity’s Accelerator Program, they created a bite-sized, sugar-free, edible jelly drop that looked and tasted like candy. The candy, called Jelly Drops, contained 95% water and electrolytes—important minerals that are often lost during dehydration. The final product launched in 2020—and was an immediate success. The drops were able to provide extra hydration to the elderly, as well as help keep dementia patients safe, since dehydration commonly leads to confusion, hospitalization, and sometimes even death.
Not only did Jelly Drops quickly become a favorite snack among dementia patients in the UK, but they were able to provide an additional boost of hydration to hospital workers during the pandemic. In NHS coronavirus hospital wards, patients infected with the virus were regularly given Jelly Drops to keep their fluid levels normal—and staff members snacked on them as well, since long shifts and personal protective equipment (PPE) they were required to wear often left them feeling parched.
In April 2022, Jelly Drops launched in the United States. The company continues to donate 1% of its profits to help fund Alzheimer’s research.